Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/3162 |
Resumo: | As soluções de energia mínima são de nidas como as soluções que indicam valor ín fimo para imagem do funcional energia associado a uma classe de problemas variacionais não lineares −∆u = g(u) u ∈ H1(RN) Oobjetivodestetrabalhoémostrarqueatravésdassoluçõesdeenergiamínimadaequação não linear acima, o valor do passo da Montanha sem a condição de Palais Smaile é um ponto crítico. Para isto provaremos que sob certas hipóteses para a função g e sob um vínculo é possível obter uma solução positiva para o problema acima, esfericamente simétrica e decrescente com o raio. Em seguida mostra-se que a solução sujeita a esse vínculo é a que possui o menor valor no funcional energia dentre todas as soluções do problema acima aplicadas no mesmo funcional. Neste contexto, garante-se a existência de pelo menos uma solução de energia mínima. Os resultados citados foram estudados em [2] e [1]. |
id |
UFJF_0c05039b4a3c6db1dbc6ad1a087163f5 |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/3162 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Miyagaki, Olimpio Hiroshihttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783379E4Faria, Luiz Fernando de Oliveirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4735580H9Araújo, Anderson Luiz Albuquerque dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4745148J8Ercole, Greyhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782358T8http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4320551A9Belchior, Pedro2017-02-02T11:10:14Z2016-08-182017-02-02T11:10:14Z2013-03-01https://repositorio.ufjf.br/jspui/handle/ufjf/3162As soluções de energia mínima são de nidas como as soluções que indicam valor ín fimo para imagem do funcional energia associado a uma classe de problemas variacionais não lineares −∆u = g(u) u ∈ H1(RN) Oobjetivodestetrabalhoémostrarqueatravésdassoluçõesdeenergiamínimadaequação não linear acima, o valor do passo da Montanha sem a condição de Palais Smaile é um ponto crítico. Para isto provaremos que sob certas hipóteses para a função g e sob um vínculo é possível obter uma solução positiva para o problema acima, esfericamente simétrica e decrescente com o raio. Em seguida mostra-se que a solução sujeita a esse vínculo é a que possui o menor valor no funcional energia dentre todas as soluções do problema acima aplicadas no mesmo funcional. Neste contexto, garante-se a existência de pelo menos uma solução de energia mínima. Os resultados citados foram estudados em [2] e [1].The least energy solutions are de ned as solutions that indicate infi mum value to the energy functional image associated with a class of nonlinear variational problems −∆u = g(u) u ∈ H1(RN) The objective of this work is to show that through least energy solutions of nonlinear equation above, the Mountain pass value without the Palais Smale condition is critical point. For this, we will prove that under certain hypotheses on the function g and under a constraint assumption is possible to obtain a positive solution for the above problem, spherically symmetric and decreasing with the radius. Then the solution of the problem subject to this constraint has the lowest value in the energy functional among all solutions of the above problem applied in the same functional. In this context, it guarantee the existence of at least one solution of the least energy. The above results were obtained in [2] and [1]. Key Words: Least Energy, Mountain Pass, Minimization, Minimum of the Action.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Juiz de Fora (UFJF)Mestrado Acadêmico em MatemáticaUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAEnergia mínimaPasso da montanhaMinimizaçãoAção mínimaLeast EnergyMountain PassMinimizationMinimum of the ActionCaracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-linearesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTEXTpedrobelchior.pdf.txtpedrobelchior.pdf.txtExtracted texttext/plain110506https://repositorio.ufjf.br/jspui/bitstream/ufjf/3162/3/pedrobelchior.pdf.txt6cde80b691652328e92d4e4e6e08fde6MD53THUMBNAILpedrobelchior.pdf.jpgpedrobelchior.pdf.jpgGenerated Thumbnailimage/jpeg1220https://repositorio.ufjf.br/jspui/bitstream/ufjf/3162/4/pedrobelchior.pdf.jpg390b8c7c563e346a83dd7bb7caf3af72MD54ORIGINALpedrobelchior.pdfpedrobelchior.pdfapplication/pdf465178https://repositorio.ufjf.br/jspui/bitstream/ufjf/3162/1/pedrobelchior.pdf997aa94857f2f7478cb38dc9980463d3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/3162/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52ufjf/31622019-11-07 11:09:28.847oai:hermes.cpd.ufjf.br:ufjf/3162TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-11-07T13:09:28Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares |
title |
Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares |
spellingShingle |
Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares Belchior, Pedro CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Energia mínima Passo da montanha Minimização Ação mínima Least Energy Mountain Pass Minimization Minimum of the Action |
title_short |
Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares |
title_full |
Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares |
title_fullStr |
Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares |
title_full_unstemmed |
Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares |
title_sort |
Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares |
author |
Belchior, Pedro |
author_facet |
Belchior, Pedro |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Miyagaki, Olimpio Hiroshi |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783379E4 |
dc.contributor.referee1.fl_str_mv |
Faria, Luiz Fernando de Oliveira |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4735580H9 |
dc.contributor.referee2.fl_str_mv |
Araújo, Anderson Luiz Albuquerque de |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4745148J8 |
dc.contributor.referee3.fl_str_mv |
Ercole, Grey |
dc.contributor.referee3Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782358T8 |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4320551A9 |
dc.contributor.author.fl_str_mv |
Belchior, Pedro |
contributor_str_mv |
Miyagaki, Olimpio Hiroshi Faria, Luiz Fernando de Oliveira Araújo, Anderson Luiz Albuquerque de Ercole, Grey |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Energia mínima Passo da montanha Minimização Ação mínima Least Energy Mountain Pass Minimization Minimum of the Action |
dc.subject.por.fl_str_mv |
Energia mínima Passo da montanha Minimização Ação mínima Least Energy Mountain Pass Minimization Minimum of the Action |
description |
As soluções de energia mínima são de nidas como as soluções que indicam valor ín fimo para imagem do funcional energia associado a uma classe de problemas variacionais não lineares −∆u = g(u) u ∈ H1(RN) Oobjetivodestetrabalhoémostrarqueatravésdassoluçõesdeenergiamínimadaequação não linear acima, o valor do passo da Montanha sem a condição de Palais Smaile é um ponto crítico. Para isto provaremos que sob certas hipóteses para a função g e sob um vínculo é possível obter uma solução positiva para o problema acima, esfericamente simétrica e decrescente com o raio. Em seguida mostra-se que a solução sujeita a esse vínculo é a que possui o menor valor no funcional energia dentre todas as soluções do problema acima aplicadas no mesmo funcional. Neste contexto, garante-se a existência de pelo menos uma solução de energia mínima. Os resultados citados foram estudados em [2] e [1]. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-03-01 |
dc.date.available.fl_str_mv |
2016-08-18 2017-02-02T11:10:14Z |
dc.date.accessioned.fl_str_mv |
2017-02-02T11:10:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/3162 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/3162 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Mestrado Acadêmico em Matemática |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/3162/3/pedrobelchior.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/3162/4/pedrobelchior.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/3162/1/pedrobelchior.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/3162/2/license.txt |
bitstream.checksum.fl_str_mv |
6cde80b691652328e92d4e4e6e08fde6 390b8c7c563e346a83dd7bb7caf3af72 997aa94857f2f7478cb38dc9980463d3 000e18a5aee6ca21bb5811ddf55fc37b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813193949495427072 |