An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements

Detalhes bibliográficos
Autor(a) principal: Finotti, Rafaelle Piazzaroli
Data de Publicação: 2019
Outros Autores: Cury, Alexandre Abrahão, Barbosa, Flávio de Souza
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFJF
Texto Completo: http://dx.doi.org/10.1590/1679-78254942
https://repositorio.ufjf.br/jspui/handle/ufjf/11191
Resumo: -
id UFJF_1e389a82667cbe29fb2fc5ab16c4a2e7
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/11191
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling 2019-10-24T11:41:20Z2019-05-212019-10-24T11:41:20Z2019-03-14162117http://dx.doi.org/10.1590/1679-78254942https://repositorio.ufjf.br/jspui/handle/ufjf/11191-Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more specifically, focused on damage assessment. Traditional damage detection methods associate structural modal deviations to damage. Nevertheless, the process used to determine modal characteristics can influence the results of such methods, which could lead to additional uncertainties. Thus, techniques combining machine learning and statistical analysis applied directly to raw measurements are being discussed in recent researches. The purpose of this paper is to investigate statistical indicators, little explored in damage identification methods, to characterize acceleration measurements directly in the time domain. Hence, the present work compares two machine learning algorithms to identify structural changes using statistics obtained from raw dynamic data. The algorithms are based on Artificial Neural Networks and Support Vector Machines. They are initially evaluated through numerical simulations using a simply supported beam model. Then, they are assessed through experimental tests performed on a laboratory beam structure and an actual railway bridge, in France. For all cases, different damage scenarios were considered. The obtained results encourage the development of computational tools using statistical indicators of acceleration measurements for structural alteration assessment.eng--BrasilLatin American Journal of Solids and Structures-Structural dynamicDamage identificationComputational intelligenceStructural health monitoringVibration monitoringDynamic measurementAn SHM approach using machine learning and statistical indicators extracted from raw dynamic measurementsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFinotti, Rafaelle PiazzaroliCury, Alexandre AbrahãoBarbosa, Flávio de Souzainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTEXTAn SHM approach using machine learning and statistical.pdf.txtAn SHM approach using machine learning and statistical.pdf.txtExtracted texttext/plain51000https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/3/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf.txt48dab8d3e1e7846cceff21f0c22036e9MD53THUMBNAILAn SHM approach using machine learning and statistical.pdf.jpgAn SHM approach using machine learning and statistical.pdf.jpgGenerated Thumbnailimage/jpeg1688https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/4/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf.jpg98f0ac526de9cb66aaf3fab57043852fMD54ORIGINALAn SHM approach using machine learning and statistical.pdfAn SHM approach using machine learning and statistical.pdfapplication/pdf3200474https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/1/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf31db35362332dabfc54df5435b14fbf1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52ufjf/111912019-10-25 04:06:13.184oai:hermes.cpd.ufjf.br:ufjf/11191TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-10-25T06:06:13Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
title An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
spellingShingle An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
Finotti, Rafaelle Piazzaroli
-
Structural dynamic
Damage identification
Computational intelligence
Structural health monitoring
Vibration monitoring
Dynamic measurement
title_short An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
title_full An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
title_fullStr An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
title_full_unstemmed An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
title_sort An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
author Finotti, Rafaelle Piazzaroli
author_facet Finotti, Rafaelle Piazzaroli
Cury, Alexandre Abrahão
Barbosa, Flávio de Souza
author_role author
author2 Cury, Alexandre Abrahão
Barbosa, Flávio de Souza
author2_role author
author
dc.contributor.author.fl_str_mv Finotti, Rafaelle Piazzaroli
Cury, Alexandre Abrahão
Barbosa, Flávio de Souza
dc.subject.cnpq.fl_str_mv -
topic -
Structural dynamic
Damage identification
Computational intelligence
Structural health monitoring
Vibration monitoring
Dynamic measurement
dc.subject.por.fl_str_mv Structural dynamic
Damage identification
Computational intelligence
Structural health monitoring
Vibration monitoring
Dynamic measurement
description -
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-10-24T11:41:20Z
dc.date.available.fl_str_mv 2019-05-21
2019-10-24T11:41:20Z
dc.date.issued.fl_str_mv 2019-03-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/11191
dc.identifier.doi.pt_BR.fl_str_mv http://dx.doi.org/10.1590/1679-78254942
url http://dx.doi.org/10.1590/1679-78254942
https://repositorio.ufjf.br/jspui/handle/ufjf/11191
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Latin American Journal of Solids and Structures
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv -
dc.publisher.initials.fl_str_mv -
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv -
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/3/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/4/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf.jpg
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/1/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/2/license.txt
bitstream.checksum.fl_str_mv 48dab8d3e1e7846cceff21f0c22036e9
98f0ac526de9cb66aaf3fab57043852f
31db35362332dabfc54df5435b14fbf1
000e18a5aee6ca21bb5811ddf55fc37b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813193868632391680