An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | http://dx.doi.org/10.1590/1679-78254942 https://repositorio.ufjf.br/jspui/handle/ufjf/11191 |
Resumo: | - |
id |
UFJF_1e389a82667cbe29fb2fc5ab16c4a2e7 |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/11191 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
2019-10-24T11:41:20Z2019-05-212019-10-24T11:41:20Z2019-03-14162117http://dx.doi.org/10.1590/1679-78254942https://repositorio.ufjf.br/jspui/handle/ufjf/11191-Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more specifically, focused on damage assessment. Traditional damage detection methods associate structural modal deviations to damage. Nevertheless, the process used to determine modal characteristics can influence the results of such methods, which could lead to additional uncertainties. Thus, techniques combining machine learning and statistical analysis applied directly to raw measurements are being discussed in recent researches. The purpose of this paper is to investigate statistical indicators, little explored in damage identification methods, to characterize acceleration measurements directly in the time domain. Hence, the present work compares two machine learning algorithms to identify structural changes using statistics obtained from raw dynamic data. The algorithms are based on Artificial Neural Networks and Support Vector Machines. They are initially evaluated through numerical simulations using a simply supported beam model. Then, they are assessed through experimental tests performed on a laboratory beam structure and an actual railway bridge, in France. For all cases, different damage scenarios were considered. The obtained results encourage the development of computational tools using statistical indicators of acceleration measurements for structural alteration assessment.eng--BrasilLatin American Journal of Solids and Structures-Structural dynamicDamage identificationComputational intelligenceStructural health monitoringVibration monitoringDynamic measurementAn SHM approach using machine learning and statistical indicators extracted from raw dynamic measurementsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFinotti, Rafaelle PiazzaroliCury, Alexandre AbrahãoBarbosa, Flávio de Souzainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTEXTAn SHM approach using machine learning and statistical.pdf.txtAn SHM approach using machine learning and statistical.pdf.txtExtracted texttext/plain51000https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/3/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf.txt48dab8d3e1e7846cceff21f0c22036e9MD53THUMBNAILAn SHM approach using machine learning and statistical.pdf.jpgAn SHM approach using machine learning and statistical.pdf.jpgGenerated Thumbnailimage/jpeg1688https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/4/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf.jpg98f0ac526de9cb66aaf3fab57043852fMD54ORIGINALAn SHM approach using machine learning and statistical.pdfAn SHM approach using machine learning and statistical.pdfapplication/pdf3200474https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/1/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf31db35362332dabfc54df5435b14fbf1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52ufjf/111912019-10-25 04:06:13.184oai:hermes.cpd.ufjf.br:ufjf/11191TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-10-25T06:06:13Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements |
title |
An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements |
spellingShingle |
An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements Finotti, Rafaelle Piazzaroli - Structural dynamic Damage identification Computational intelligence Structural health monitoring Vibration monitoring Dynamic measurement |
title_short |
An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements |
title_full |
An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements |
title_fullStr |
An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements |
title_full_unstemmed |
An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements |
title_sort |
An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements |
author |
Finotti, Rafaelle Piazzaroli |
author_facet |
Finotti, Rafaelle Piazzaroli Cury, Alexandre Abrahão Barbosa, Flávio de Souza |
author_role |
author |
author2 |
Cury, Alexandre Abrahão Barbosa, Flávio de Souza |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Finotti, Rafaelle Piazzaroli Cury, Alexandre Abrahão Barbosa, Flávio de Souza |
dc.subject.cnpq.fl_str_mv |
- |
topic |
- Structural dynamic Damage identification Computational intelligence Structural health monitoring Vibration monitoring Dynamic measurement |
dc.subject.por.fl_str_mv |
Structural dynamic Damage identification Computational intelligence Structural health monitoring Vibration monitoring Dynamic measurement |
description |
- |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-10-24T11:41:20Z |
dc.date.available.fl_str_mv |
2019-05-21 2019-10-24T11:41:20Z |
dc.date.issued.fl_str_mv |
2019-03-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/11191 |
dc.identifier.doi.pt_BR.fl_str_mv |
http://dx.doi.org/10.1590/1679-78254942 |
url |
http://dx.doi.org/10.1590/1679-78254942 https://repositorio.ufjf.br/jspui/handle/ufjf/11191 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Latin American Journal of Solids and Structures |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
- |
dc.publisher.initials.fl_str_mv |
- |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
- |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/3/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/4/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/1/An%20SHM%20approach%20using%20machine%20learning%20and%20statistical.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/11191/2/license.txt |
bitstream.checksum.fl_str_mv |
48dab8d3e1e7846cceff21f0c22036e9 98f0ac526de9cb66aaf3fab57043852f 31db35362332dabfc54df5435b14fbf1 000e18a5aee6ca21bb5811ddf55fc37b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813193868632391680 |