Redes neurais artificiais adaptativas: abordagem evolutiva para melhoria de performance e eficiência

Detalhes bibliográficos
Autor(a) principal: Fonseca, Tales Lima
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/16591
Resumo: Nos últimos anos, as redes neurais artificiais têm se destacado como uma das ferramentas mais poderosas no campo da inteligência artificial, oferecendo soluções inovadoras em uma variedade de aplicações. No entanto, o desenvolvimento dessas redes muitas vezes enfrenta desafios significativos relacionados à eficiência computacional e ao impacto ambiental. Esta pesquisa tem como objetivo investigar esses desafios, em particular no processo de criação de redes neurais artificiais, e propor uma solução para melhorar sua eficiência em termos de qualidade preditiva, restrições de hardware e redução dos impactos ambientais. Partindo da hipótese de que as funções de ativação adaptativas são capazes de criar neurônios mais complexos na arquitetura, reduzindo a necessidade de abordagens de aprendizado profundo que resultam em modelos mais pesados e complexos. O foco principal deste estudo é propor o desenvolvimento de uma estratégia evolutiva para a criação de redes neurais artificiais que utilizem funções de ativação adaptativas, com o objetivo de encontrar modelos com maior poder preditivo e com a menor complexidade possível. Isso visa contribuir para a redução das emissões de dióxido de carbono e outros gases associados às mudanças climáticas, decorrentes da execução desses modelos. Foram realizados quatro conjuntos de experimentos numéricos para avaliar a hipótese e a proposta. Os dois primeiros experimentos compararam a eficiência das funções de ativação adaptativas em relação às funções de ativação tradicionais em problemas de classificação e regressão. O terceiro experimento combinou abordagens evolutivas com funções de ativação adaptativas para encontrar o melhor modelo em termos de métrica e complexidade em problemas de Autoencoder. Por fim, no quarto experimento, estendeu-se a aplicação das abordagens evolutivas combinadas com funções de ativação adaptativas, desta vez voltadas para otimizar o modelo em termos de métrica e complexidade em um contexto real de detecção de tumores cerebrais. Todos os resultados obtidos apresentaram um ganho ao se utilizar as Funções de Ativação Adaptativas na construção das arquiteturas, além de um impacto ambiental comparável com estratégias tradicionais. Esses resultados representam um avanço significativo na busca por redes neurais artificiais mais eficazes e ecologicamente conscientes, alinhando Otimização Evolutiva com a responsabilidade ambiental, especialmente na redução da Pegada de Carbono.
id UFJF_1e45d36176c99e8a2e53ee84fb32a443
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/16591
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Fonseca, Leonardo Goliatt dahttp://lattes.cnpq.br/9030707448549156Lemonge, Afonso Celso de Castrohttp://lattes.cnpq.br/6681044486435612Campos, Luciana Conceição Diashttp://lattes.cnpq.br/Saporetti, Camila Martinshttp://lattes.cnpq.br/4862105931908699Silva, Gustavo Rocha dahttp://lattes.cnpq.br/http://lattes.cnpq.br/2806860023990548Fonseca, Tales Lima2024-02-02T13:49:18Z2024-02-022024-02-02T13:49:18Z2023-11-24https://repositorio.ufjf.br/jspui/handle/ufjf/16591Nos últimos anos, as redes neurais artificiais têm se destacado como uma das ferramentas mais poderosas no campo da inteligência artificial, oferecendo soluções inovadoras em uma variedade de aplicações. No entanto, o desenvolvimento dessas redes muitas vezes enfrenta desafios significativos relacionados à eficiência computacional e ao impacto ambiental. Esta pesquisa tem como objetivo investigar esses desafios, em particular no processo de criação de redes neurais artificiais, e propor uma solução para melhorar sua eficiência em termos de qualidade preditiva, restrições de hardware e redução dos impactos ambientais. Partindo da hipótese de que as funções de ativação adaptativas são capazes de criar neurônios mais complexos na arquitetura, reduzindo a necessidade de abordagens de aprendizado profundo que resultam em modelos mais pesados e complexos. O foco principal deste estudo é propor o desenvolvimento de uma estratégia evolutiva para a criação de redes neurais artificiais que utilizem funções de ativação adaptativas, com o objetivo de encontrar modelos com maior poder preditivo e com a menor complexidade possível. Isso visa contribuir para a redução das emissões de dióxido de carbono e outros gases associados às mudanças climáticas, decorrentes da execução desses modelos. Foram realizados quatro conjuntos de experimentos numéricos para avaliar a hipótese e a proposta. Os dois primeiros experimentos compararam a eficiência das funções de ativação adaptativas em relação às funções de ativação tradicionais em problemas de classificação e regressão. O terceiro experimento combinou abordagens evolutivas com funções de ativação adaptativas para encontrar o melhor modelo em termos de métrica e complexidade em problemas de Autoencoder. Por fim, no quarto experimento, estendeu-se a aplicação das abordagens evolutivas combinadas com funções de ativação adaptativas, desta vez voltadas para otimizar o modelo em termos de métrica e complexidade em um contexto real de detecção de tumores cerebrais. Todos os resultados obtidos apresentaram um ganho ao se utilizar as Funções de Ativação Adaptativas na construção das arquiteturas, além de um impacto ambiental comparável com estratégias tradicionais. Esses resultados representam um avanço significativo na busca por redes neurais artificiais mais eficazes e ecologicamente conscientes, alinhando Otimização Evolutiva com a responsabilidade ambiental, especialmente na redução da Pegada de Carbono.In recent years, artificial neural networks have emerged as one of the most powerful tools in the field of artificial intelligence, offering innovative solutions across a variety of applications. However, the development of these networks often faces significant challenges related to computational efficiency and environmental impact. This research aims to investigate these challenges, particularly in the process of creating artificial neural networks, and propose a solution to enhance their efficiency in terms of predictive quality, hardware constraints, and environmental impact reduction. Building on the hypothesis that adaptive activation functions are capable of creating more complex neurons in the architecture, thereby reducing the need for deep learning approaches that result in heavier and more complex models, the primary focus of this study is to propose the development of an evolutionary strategy for creating artificial neural networks using adaptive activation functions. The objective is to find models with higher predictive power and the least possible complexity. This endeavor seeks to contribute to the reduction of carbon dioxide emissions and other gases associated with climate change resulting from the execution of these models. Four sets of numerical experiments were conducted to evaluate the hypothesis and the proposed solution. The first two experiments compared the efficiency of adaptive activation functions against traditional activation functions in classification and regression problems. The third experiment combined evolutionary approaches with adaptive activation functions to find the best model in terms of metrics and complexity in Autoencoder problems. Finally, in the fourth experiment, the application of evolutionary approaches combined with adaptive activation functions was extended, this time focusing on optimizing the model in terms of metrics and complexity in a real context of brain tumor detection. All obtained results demonstrated a gain when using Adaptive Activation Functions in architecture construction, along with an environmental impact comparable to traditional strategies. These findings represent a significant advancement in the pursuit of more effective and environmentally conscious artificial neural networks, aligning Evolutionary Optimization with environmental responsibility, especially in reducing Carbon Footprint.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Modelagem ComputacionalUFJFBrasilICE – Instituto de Ciências ExatasAttribution-ShareAlike 3.0 Brazilhttp://creativecommons.org/licenses/by-sa/3.0/br/info:eu-repo/semantics/openAccessCNPQ::ENGENHARIASRedes Neurais ArtificiaisFunção de ativação adaptativaOtimização evolutivaPegada de carbonoArtificial neural networksAdaptive activation functionEvolutionary optimizationCarbon footprintRedes neurais artificiais adaptativas: abordagem evolutiva para melhoria de performance e eficiênciainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFORIGINALtaleslimafonseca.pdftaleslimafonseca.pdfPDF/Aapplication/pdf31900710https://repositorio.ufjf.br/jspui/bitstream/ufjf/16591/1/taleslimafonseca.pdfdabad9c8d36d2b79432c264cf6dde42aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.ufjf.br/jspui/bitstream/ufjf/16591/2/license_rdf9b85e4235558a2887c2be3998124b615MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/16591/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTtaleslimafonseca.pdf.txttaleslimafonseca.pdf.txtExtracted texttext/plain450269https://repositorio.ufjf.br/jspui/bitstream/ufjf/16591/4/taleslimafonseca.pdf.txt71aca7868206d54d09c7aea53e9282caMD54THUMBNAILtaleslimafonseca.pdf.jpgtaleslimafonseca.pdf.jpgGenerated Thumbnailimage/jpeg1147https://repositorio.ufjf.br/jspui/bitstream/ufjf/16591/5/taleslimafonseca.pdf.jpgef2b3a7da7379916b68eb7748bc38b90MD55ufjf/165912024-02-03 04:04:04.49oai:hermes.cpd.ufjf.br:ufjf/16591Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2024-02-03T06:04:04Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv Redes neurais artificiais adaptativas: abordagem evolutiva para melhoria de performance e eficiência
title Redes neurais artificiais adaptativas: abordagem evolutiva para melhoria de performance e eficiência
spellingShingle Redes neurais artificiais adaptativas: abordagem evolutiva para melhoria de performance e eficiência
Fonseca, Tales Lima
CNPQ::ENGENHARIAS
Redes Neurais Artificiais
Função de ativação adaptativa
Otimização evolutiva
Pegada de carbono
Artificial neural networks
Adaptive activation function
Evolutionary optimization
Carbon footprint
title_short Redes neurais artificiais adaptativas: abordagem evolutiva para melhoria de performance e eficiência
title_full Redes neurais artificiais adaptativas: abordagem evolutiva para melhoria de performance e eficiência
title_fullStr Redes neurais artificiais adaptativas: abordagem evolutiva para melhoria de performance e eficiência
title_full_unstemmed Redes neurais artificiais adaptativas: abordagem evolutiva para melhoria de performance e eficiência
title_sort Redes neurais artificiais adaptativas: abordagem evolutiva para melhoria de performance e eficiência
author Fonseca, Tales Lima
author_facet Fonseca, Tales Lima
author_role author
dc.contributor.advisor1.fl_str_mv Fonseca, Leonardo Goliatt da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9030707448549156
dc.contributor.referee1.fl_str_mv Lemonge, Afonso Celso de Castro
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6681044486435612
dc.contributor.referee2.fl_str_mv Campos, Luciana Conceição Dias
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/
dc.contributor.referee3.fl_str_mv Saporetti, Camila Martins
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4862105931908699
dc.contributor.referee4.fl_str_mv Silva, Gustavo Rocha da
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2806860023990548
dc.contributor.author.fl_str_mv Fonseca, Tales Lima
contributor_str_mv Fonseca, Leonardo Goliatt da
Lemonge, Afonso Celso de Castro
Campos, Luciana Conceição Dias
Saporetti, Camila Martins
Silva, Gustavo Rocha da
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
topic CNPQ::ENGENHARIAS
Redes Neurais Artificiais
Função de ativação adaptativa
Otimização evolutiva
Pegada de carbono
Artificial neural networks
Adaptive activation function
Evolutionary optimization
Carbon footprint
dc.subject.por.fl_str_mv Redes Neurais Artificiais
Função de ativação adaptativa
Otimização evolutiva
Pegada de carbono
Artificial neural networks
Adaptive activation function
Evolutionary optimization
Carbon footprint
description Nos últimos anos, as redes neurais artificiais têm se destacado como uma das ferramentas mais poderosas no campo da inteligência artificial, oferecendo soluções inovadoras em uma variedade de aplicações. No entanto, o desenvolvimento dessas redes muitas vezes enfrenta desafios significativos relacionados à eficiência computacional e ao impacto ambiental. Esta pesquisa tem como objetivo investigar esses desafios, em particular no processo de criação de redes neurais artificiais, e propor uma solução para melhorar sua eficiência em termos de qualidade preditiva, restrições de hardware e redução dos impactos ambientais. Partindo da hipótese de que as funções de ativação adaptativas são capazes de criar neurônios mais complexos na arquitetura, reduzindo a necessidade de abordagens de aprendizado profundo que resultam em modelos mais pesados e complexos. O foco principal deste estudo é propor o desenvolvimento de uma estratégia evolutiva para a criação de redes neurais artificiais que utilizem funções de ativação adaptativas, com o objetivo de encontrar modelos com maior poder preditivo e com a menor complexidade possível. Isso visa contribuir para a redução das emissões de dióxido de carbono e outros gases associados às mudanças climáticas, decorrentes da execução desses modelos. Foram realizados quatro conjuntos de experimentos numéricos para avaliar a hipótese e a proposta. Os dois primeiros experimentos compararam a eficiência das funções de ativação adaptativas em relação às funções de ativação tradicionais em problemas de classificação e regressão. O terceiro experimento combinou abordagens evolutivas com funções de ativação adaptativas para encontrar o melhor modelo em termos de métrica e complexidade em problemas de Autoencoder. Por fim, no quarto experimento, estendeu-se a aplicação das abordagens evolutivas combinadas com funções de ativação adaptativas, desta vez voltadas para otimizar o modelo em termos de métrica e complexidade em um contexto real de detecção de tumores cerebrais. Todos os resultados obtidos apresentaram um ganho ao se utilizar as Funções de Ativação Adaptativas na construção das arquiteturas, além de um impacto ambiental comparável com estratégias tradicionais. Esses resultados representam um avanço significativo na busca por redes neurais artificiais mais eficazes e ecologicamente conscientes, alinhando Otimização Evolutiva com a responsabilidade ambiental, especialmente na redução da Pegada de Carbono.
publishDate 2023
dc.date.issued.fl_str_mv 2023-11-24
dc.date.accessioned.fl_str_mv 2024-02-02T13:49:18Z
dc.date.available.fl_str_mv 2024-02-02
2024-02-02T13:49:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/16591
url https://repositorio.ufjf.br/jspui/handle/ufjf/16591
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-sa/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-sa/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Modelagem Computacional
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICE – Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/16591/1/taleslimafonseca.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/16591/2/license_rdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/16591/3/license.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/16591/4/taleslimafonseca.pdf.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/16591/5/taleslimafonseca.pdf.jpg
bitstream.checksum.fl_str_mv dabad9c8d36d2b79432c264cf6dde42a
9b85e4235558a2887c2be3998124b615
8a4605be74aa9ea9d79846c1fba20a33
71aca7868206d54d09c7aea53e9282ca
ef2b3a7da7379916b68eb7748bc38b90
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813193915255226368