Otimização de um sistema de patrulhamento por múltiplos robôs utilizando algoritmo genético

Detalhes bibliográficos
Autor(a) principal: Sá, Rafael José Fonseca de
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/3608
Resumo: Com a evolução da tecnologia, estão aumentando as aplicabilidades dos robôs em nosso meio. Em alguns casos, a utilização de sistemas com múltiplos robôs autônomos trabalhando em cooperação se torna uma ótima alternativa. Há várias pesquisas em andamento na área de robótica com o intuito de aprimorar estas tarefas. Entre estas pesquisas estão os sistemas de patrulhamento. Neste trabalho, o sistema de patrulhamento utilizando múltiplos robôs é implementado considerando a série de chegada de alertas nas estações de monitoramento e o robô pode andar somente em uma única direção. Devido ao número de estações que podem entrar em alerta e ao número de robôs, o controle desse sistema se torna complexo. Como a finalidade de um sistema de patrulhamento é atender possíveis alertas de invasores, é imprescindível que haja uma resposta rápida do controlador responsável para que um robô logo seja encaminhado com o propósito de atender a esse alerta. No caso de sistemas com múltiplos robôs, é necessário que haja uma coordenação do controlador para que os robôs possam atender o máximo de alertas possíveis em um menor instante de tempo. Para resolver esse problema, foi utilizado um controlador composto por uma técnica inteligente de otimização bioinspirada chamada de “Algoritmo Genético” (AG). Este controlador centraliza todas as decisões de controle dos robôs, sendo responsável por orientá-los em relação aos movimentos e captação de informação. As decisões são tomadas com o intuito de maximizar a recompensa do sistema. Esta recompensa é composta pelo ganho de informação do sistema e por uma penalização gerada pela demora em atender aos alertas ativados. Foram feitas simulações com a intenção de verificar a eficácia desse controlador, comparando-o com um controlador utilizando heurísticas pré-definidas. Essas simulações comprovaram a eficiência do controlador via Algoritmo Genético. Devido ao fato do controlador via AG analisar o sistema como um todo enquanto que o controlador heurístico analisa apenas o estágio atual, foi possível observar que a distribuição dos robôs no mapa permitia um atendimento mais ágil às estações com alerta ativados, assim como uma maior aquisição de informações do local. Outro fato importante foi em relação à complexidade do sistema. Foi notado que quanto maior a complexidade do sistema, ou seja, quanto maior o número de robôs e de estações, melhor era a eficiência do controlador via Algoritmo Genético em relação ao controlador heurístico.
id UFJF_315307afc6a742e1e406dabf1fb695a0
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/3608
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Marcato, André Luís Marqueshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4737297A6Silva Junior, Ivo Chaves dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771513T6Oliveira, Fernando Luiz Cyrinohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4746717Y1Oliveira, Leonardo Willer dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4711128E4http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4691299H4Sá, Rafael José Fonseca de2017-03-10T12:58:01Z2017-03-092017-03-10T12:58:01Z2016-09-09https://repositorio.ufjf.br/jspui/handle/ufjf/3608Com a evolução da tecnologia, estão aumentando as aplicabilidades dos robôs em nosso meio. Em alguns casos, a utilização de sistemas com múltiplos robôs autônomos trabalhando em cooperação se torna uma ótima alternativa. Há várias pesquisas em andamento na área de robótica com o intuito de aprimorar estas tarefas. Entre estas pesquisas estão os sistemas de patrulhamento. Neste trabalho, o sistema de patrulhamento utilizando múltiplos robôs é implementado considerando a série de chegada de alertas nas estações de monitoramento e o robô pode andar somente em uma única direção. Devido ao número de estações que podem entrar em alerta e ao número de robôs, o controle desse sistema se torna complexo. Como a finalidade de um sistema de patrulhamento é atender possíveis alertas de invasores, é imprescindível que haja uma resposta rápida do controlador responsável para que um robô logo seja encaminhado com o propósito de atender a esse alerta. No caso de sistemas com múltiplos robôs, é necessário que haja uma coordenação do controlador para que os robôs possam atender o máximo de alertas possíveis em um menor instante de tempo. Para resolver esse problema, foi utilizado um controlador composto por uma técnica inteligente de otimização bioinspirada chamada de “Algoritmo Genético” (AG). Este controlador centraliza todas as decisões de controle dos robôs, sendo responsável por orientá-los em relação aos movimentos e captação de informação. As decisões são tomadas com o intuito de maximizar a recompensa do sistema. Esta recompensa é composta pelo ganho de informação do sistema e por uma penalização gerada pela demora em atender aos alertas ativados. Foram feitas simulações com a intenção de verificar a eficácia desse controlador, comparando-o com um controlador utilizando heurísticas pré-definidas. Essas simulações comprovaram a eficiência do controlador via Algoritmo Genético. Devido ao fato do controlador via AG analisar o sistema como um todo enquanto que o controlador heurístico analisa apenas o estágio atual, foi possível observar que a distribuição dos robôs no mapa permitia um atendimento mais ágil às estações com alerta ativados, assim como uma maior aquisição de informações do local. Outro fato importante foi em relação à complexidade do sistema. Foi notado que quanto maior a complexidade do sistema, ou seja, quanto maior o número de robôs e de estações, melhor era a eficiência do controlador via Algoritmo Genético em relação ao controlador heurístico.New technologies have been considerable advances, and consequently, thus allows the robot appearance as an integral part of our daily lives. In recent years, the design of cooperative multi-robot systems has become a highly active research area within robotics. Cooperative multi-robot systems (MRS) have received significant attention by the robotics community for the past two decades, because their successful deployment have unquestionable social and economical relevance in many application domain. There are several advantages of using multi-robot systems in different application and task. The development and conception of patrolling methods using multi-robot systems is a scientific area which has a growing interest. This work, the patrol system using multiple robots is implemented considering the series of arrival of alerts in the monitoring stations known and the robot was limited to move in one direction. Due to the large number of stations that can assume alert condition and due to the large number of robots, the system control becomes extremely complex. Patrol systems are usually designed for surveillance. An efficient controller permits a patrol in a way that maximizes their chances of detecting an adversary trying to penetrate through the patrol path. The obvious advantage of multi-robot exploration is its concurrency, which can greatly reduce the time needed for the mission. Coordination among multiple robots is necessary to achieve efficiency in robotic explorations. When working in groups, robots need to coordinate their activities. However, a Genetic Algorithm approach was implemented to carryout an optimized control action provided from the controller. In fact the controller determines the robot's behavior. The decision strategies are implemented in order to maximize the system response. The present work deals with a computational study of controller based on Genetic Algorithm and it comparison with another controller based pre-defined heuristics. The simulation results show the efficiency of the proposed controller based on Genetic Algorithm, when compared with the controller based on heuristics. The right decisions from the controller based on Genetic Algorithm allowed a better distribution of the robots on the map leading to fast service stations with active alert, as well as increased acquisition of location information. Another important fact was regarding the complexity of the system. Also, as a result, it was noticed an excellent efficiency of the controller based on Genetic Algorithm when the existence of the large number of robots and stations.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Engenharia ElétricaUFJFBrasilFaculdade de EngenhariaCNPQ::ENGENHARIAS::ENGENHARIA ELETRICASistema de patrulhamentoOtimizaçãoAlgoritmo genéticoMulti-robôMulti-robot patrollingOptimizationGenetic algorithmMulti-robot systemsOtimização de um sistema de patrulhamento por múltiplos robôs utilizando algoritmo genéticoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTHUMBNAILrafaeljosefonsecadesa.pdf.jpgrafaeljosefonsecadesa.pdf.jpgGenerated Thumbnailimage/jpeg1144https://repositorio.ufjf.br/jspui/bitstream/ufjf/3608/4/rafaeljosefonsecadesa.pdf.jpga5eb13ed4d7ba455002d792f779978cbMD54ORIGINALrafaeljosefonsecadesa.pdfrafaeljosefonsecadesa.pdfapplication/pdf2699281https://repositorio.ufjf.br/jspui/bitstream/ufjf/3608/1/rafaeljosefonsecadesa.pdfca2455c138265324b1a8fcbb6075da41MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/3608/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52TEXTrafaeljosefonsecadesa.pdf.txtrafaeljosefonsecadesa.pdf.txtExtracted texttext/plain116333https://repositorio.ufjf.br/jspui/bitstream/ufjf/3608/3/rafaeljosefonsecadesa.pdf.txt17ea1a83b086a4bd0f97411baf8cc1e7MD53ufjf/36082019-11-07 11:06:23.86oai:hermes.cpd.ufjf.br:ufjf/3608TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-11-07T13:06:23Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv Otimização de um sistema de patrulhamento por múltiplos robôs utilizando algoritmo genético
title Otimização de um sistema de patrulhamento por múltiplos robôs utilizando algoritmo genético
spellingShingle Otimização de um sistema de patrulhamento por múltiplos robôs utilizando algoritmo genético
Sá, Rafael José Fonseca de
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Sistema de patrulhamento
Otimização
Algoritmo genético
Multi-robô
Multi-robot patrolling
Optimization
Genetic algorithm
Multi-robot systems
title_short Otimização de um sistema de patrulhamento por múltiplos robôs utilizando algoritmo genético
title_full Otimização de um sistema de patrulhamento por múltiplos robôs utilizando algoritmo genético
title_fullStr Otimização de um sistema de patrulhamento por múltiplos robôs utilizando algoritmo genético
title_full_unstemmed Otimização de um sistema de patrulhamento por múltiplos robôs utilizando algoritmo genético
title_sort Otimização de um sistema de patrulhamento por múltiplos robôs utilizando algoritmo genético
author Sá, Rafael José Fonseca de
author_facet Sá, Rafael José Fonseca de
author_role author
dc.contributor.advisor1.fl_str_mv Marcato, André Luís Marques
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4737297A6
dc.contributor.advisor-co1.fl_str_mv Silva Junior, Ivo Chaves da
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771513T6
dc.contributor.referee1.fl_str_mv Oliveira, Fernando Luiz Cyrino
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4746717Y1
dc.contributor.referee2.fl_str_mv Oliveira, Leonardo Willer de
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4711128E4
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4691299H4
dc.contributor.author.fl_str_mv Sá, Rafael José Fonseca de
contributor_str_mv Marcato, André Luís Marques
Silva Junior, Ivo Chaves da
Oliveira, Fernando Luiz Cyrino
Oliveira, Leonardo Willer de
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Sistema de patrulhamento
Otimização
Algoritmo genético
Multi-robô
Multi-robot patrolling
Optimization
Genetic algorithm
Multi-robot systems
dc.subject.por.fl_str_mv Sistema de patrulhamento
Otimização
Algoritmo genético
Multi-robô
Multi-robot patrolling
Optimization
Genetic algorithm
Multi-robot systems
description Com a evolução da tecnologia, estão aumentando as aplicabilidades dos robôs em nosso meio. Em alguns casos, a utilização de sistemas com múltiplos robôs autônomos trabalhando em cooperação se torna uma ótima alternativa. Há várias pesquisas em andamento na área de robótica com o intuito de aprimorar estas tarefas. Entre estas pesquisas estão os sistemas de patrulhamento. Neste trabalho, o sistema de patrulhamento utilizando múltiplos robôs é implementado considerando a série de chegada de alertas nas estações de monitoramento e o robô pode andar somente em uma única direção. Devido ao número de estações que podem entrar em alerta e ao número de robôs, o controle desse sistema se torna complexo. Como a finalidade de um sistema de patrulhamento é atender possíveis alertas de invasores, é imprescindível que haja uma resposta rápida do controlador responsável para que um robô logo seja encaminhado com o propósito de atender a esse alerta. No caso de sistemas com múltiplos robôs, é necessário que haja uma coordenação do controlador para que os robôs possam atender o máximo de alertas possíveis em um menor instante de tempo. Para resolver esse problema, foi utilizado um controlador composto por uma técnica inteligente de otimização bioinspirada chamada de “Algoritmo Genético” (AG). Este controlador centraliza todas as decisões de controle dos robôs, sendo responsável por orientá-los em relação aos movimentos e captação de informação. As decisões são tomadas com o intuito de maximizar a recompensa do sistema. Esta recompensa é composta pelo ganho de informação do sistema e por uma penalização gerada pela demora em atender aos alertas ativados. Foram feitas simulações com a intenção de verificar a eficácia desse controlador, comparando-o com um controlador utilizando heurísticas pré-definidas. Essas simulações comprovaram a eficiência do controlador via Algoritmo Genético. Devido ao fato do controlador via AG analisar o sistema como um todo enquanto que o controlador heurístico analisa apenas o estágio atual, foi possível observar que a distribuição dos robôs no mapa permitia um atendimento mais ágil às estações com alerta ativados, assim como uma maior aquisição de informações do local. Outro fato importante foi em relação à complexidade do sistema. Foi notado que quanto maior a complexidade do sistema, ou seja, quanto maior o número de robôs e de estações, melhor era a eficiência do controlador via Algoritmo Genético em relação ao controlador heurístico.
publishDate 2016
dc.date.issued.fl_str_mv 2016-09-09
dc.date.accessioned.fl_str_mv 2017-03-10T12:58:01Z
dc.date.available.fl_str_mv 2017-03-09
2017-03-10T12:58:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/3608
url https://repositorio.ufjf.br/jspui/handle/ufjf/3608
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Faculdade de Engenharia
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/3608/4/rafaeljosefonsecadesa.pdf.jpg
https://repositorio.ufjf.br/jspui/bitstream/ufjf/3608/1/rafaeljosefonsecadesa.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/3608/2/license.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/3608/3/rafaeljosefonsecadesa.pdf.txt
bitstream.checksum.fl_str_mv a5eb13ed4d7ba455002d792f779978cb
ca2455c138265324b1a8fcbb6075da41
000e18a5aee6ca21bb5811ddf55fc37b
17ea1a83b086a4bd0f97411baf8cc1e7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813193968526032896