Produção de nanobiocompósito contendo nanofibras de celulose para o cultivo de células-tronco mesenquimais e aplicação em reparo ósseo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/11933 |
Resumo: | As nanofibras de celulose (NFCs) são polímeros naturais que apresentam propriedades mecânicas que as tornam muito atrativas para aplicações na construção de matrizes poliméricas aplicadas à engenharia de tecidos. O fornecimento exógeno de uma matriz polimérica de suporte em associação com células-tronco surge como solução promissora para a indução de diferenciação de células-tronco e reparo de lesões ósseas. Porém, apesar da celulose ser um material biocompatível, quando os materiais estão em nanoescala tornam-se mais reativos, necessitando investigar seu potencial efeito tóxico para garantir uma aplicação segura. A hipótese desse trabalho é que as NFCs são citocompatíveis e quando utilizadas como componentes de nanobiocompósitos induzem a proliferação e diferenciação de células-tronco mesenquimais humanas. O objetivo geral deste projeto foi avaliar a citocompatibilidade das NFCs de algodão e o potencial do nanobiocompósito contendo NFC e quitosana em promover a proliferação e diferenciação osteogênica das células-tronco mesenquimais humanas. No experimento 1 foi realizada a caracterização físico-química das NFCs e a avaliação do potencial efeito tóxico e de indução de diferenciação osteogênica das NFCs em suspensão nas células-tronco mesenquimais humanas extraídas da polpa dentária cultivadas in vitro. No experimento 2, foi realizada a síntese pela técnica de evaporação do solvente e a caracterização físico-química do nanobiocompósito. Células HEK293 foram cultivadas sobre essa matriz para testar a citocompatibilidade e a capacidade do nanobiocompósito em promover a adesão e proliferação de células humanas. Posteriormente, no experimento 3, visando uma maior estabilidade as propriedades físico-químicas do nanobiocompósito foram alteradas e, novamente caracterizadas e, então as células-tronco mesenquimais humanas foram cultivadas sobre o nanobiocompósito para avaliar a citocompatibilidade e o potencial de indução de diferenciação osteogênica. Os resultados do experimento 1 revelaram que as NFCs de algodão se apresentam em forma de fibra alongada semelhante à agulha, com diâmetros de cerca de 6 a 18 nm, enquanto o seu comprimento variou de 85 a 200 nm. As bandas características da celulose foram obtidas pelas espectroscopias e as NFCs demonstraram exibir cargas superficiais negativas em sua superfície (–10 mV). Nas condições testadas, não houve diferença (p>0,05) nas taxas de proliferação, viabilidade, ciclo celular e níveis de SOD extracelular. No entanto, a exposição às NFCs por 48 h diminuiu os níveis de expressão dos genes relacionados ao estresse e apoptose (ATF4, DAPK1 e BAX;p<0,05). Adicionalmente, os resultados de atividade da fosfatase alcalina (p<0,05), von Kossa e Vermelho de alizarina demonstraram que as NFCs de algodão demonstraram capacidade de indução osteogênica nas células-tronco mesenquimais humanas. No experimento 2, os resultados de caracterização mostraram que a NFC aumentou a nanotopografia e diminuiu as taxas de intumescimento e degradação do nanobiocompósito NFC/quitosana (p<0,05). Nos ensaios de citocompatibilidade, o nanobiocompósito promoveu a proliferação celular e o aumento da área das células HEK293 (p<0,05), porém mostrou-se citotóxico após 72 h de cultura. No experimento 3, as propriedades físico-químicas do nanobiocompósito foram alteradas melhorando a citocompatibilidade, bem como apresentou capacidade de indução de diferenciação osteogênica para células tronco-mesenquimais humanas. Em conjunto, os dados desse estudo forneceram novas informações sobre a citocompatibilidade das NFCs de algodão e dos nanobiocompósitos contendo NFCs de algodão. As NFCs e os nanobiocompósitos induziram a proliferação e diferenciação das células-tronco, o que abre possibilidades para futuras aplicações desses biomateriais na terapia celular e regeneração óssea. |
id |
UFJF_732927208fc0aa5fffb2e0bd922e7b3a |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/11933 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Pereira, Michele Munkhttp://lattes.cnpq.br/8094404295191170Alvarenga, Érika Lorena Fonseca Costa dehttp://lattes.cnpq.br/6549536708522132Brandão, Humberto de Mellohttp://lattes.cnpq.br/4646271838089206Pinto, Priscila de Fariahttp://lattes.cnpq.br/2845802069045973http://lattes.cnpq.br/3322436504425467Zanette, Rafaella de Souza Salomão2020-11-27T12:38:23Z2020-11-262020-11-27T12:38:23Z2020-03-03https://repositorio.ufjf.br/jspui/handle/ufjf/11933As nanofibras de celulose (NFCs) são polímeros naturais que apresentam propriedades mecânicas que as tornam muito atrativas para aplicações na construção de matrizes poliméricas aplicadas à engenharia de tecidos. O fornecimento exógeno de uma matriz polimérica de suporte em associação com células-tronco surge como solução promissora para a indução de diferenciação de células-tronco e reparo de lesões ósseas. Porém, apesar da celulose ser um material biocompatível, quando os materiais estão em nanoescala tornam-se mais reativos, necessitando investigar seu potencial efeito tóxico para garantir uma aplicação segura. A hipótese desse trabalho é que as NFCs são citocompatíveis e quando utilizadas como componentes de nanobiocompósitos induzem a proliferação e diferenciação de células-tronco mesenquimais humanas. O objetivo geral deste projeto foi avaliar a citocompatibilidade das NFCs de algodão e o potencial do nanobiocompósito contendo NFC e quitosana em promover a proliferação e diferenciação osteogênica das células-tronco mesenquimais humanas. No experimento 1 foi realizada a caracterização físico-química das NFCs e a avaliação do potencial efeito tóxico e de indução de diferenciação osteogênica das NFCs em suspensão nas células-tronco mesenquimais humanas extraídas da polpa dentária cultivadas in vitro. No experimento 2, foi realizada a síntese pela técnica de evaporação do solvente e a caracterização físico-química do nanobiocompósito. Células HEK293 foram cultivadas sobre essa matriz para testar a citocompatibilidade e a capacidade do nanobiocompósito em promover a adesão e proliferação de células humanas. Posteriormente, no experimento 3, visando uma maior estabilidade as propriedades físico-químicas do nanobiocompósito foram alteradas e, novamente caracterizadas e, então as células-tronco mesenquimais humanas foram cultivadas sobre o nanobiocompósito para avaliar a citocompatibilidade e o potencial de indução de diferenciação osteogênica. Os resultados do experimento 1 revelaram que as NFCs de algodão se apresentam em forma de fibra alongada semelhante à agulha, com diâmetros de cerca de 6 a 18 nm, enquanto o seu comprimento variou de 85 a 200 nm. As bandas características da celulose foram obtidas pelas espectroscopias e as NFCs demonstraram exibir cargas superficiais negativas em sua superfície (–10 mV). Nas condições testadas, não houve diferença (p>0,05) nas taxas de proliferação, viabilidade, ciclo celular e níveis de SOD extracelular. No entanto, a exposição às NFCs por 48 h diminuiu os níveis de expressão dos genes relacionados ao estresse e apoptose (ATF4, DAPK1 e BAX;p<0,05). Adicionalmente, os resultados de atividade da fosfatase alcalina (p<0,05), von Kossa e Vermelho de alizarina demonstraram que as NFCs de algodão demonstraram capacidade de indução osteogênica nas células-tronco mesenquimais humanas. No experimento 2, os resultados de caracterização mostraram que a NFC aumentou a nanotopografia e diminuiu as taxas de intumescimento e degradação do nanobiocompósito NFC/quitosana (p<0,05). Nos ensaios de citocompatibilidade, o nanobiocompósito promoveu a proliferação celular e o aumento da área das células HEK293 (p<0,05), porém mostrou-se citotóxico após 72 h de cultura. No experimento 3, as propriedades físico-químicas do nanobiocompósito foram alteradas melhorando a citocompatibilidade, bem como apresentou capacidade de indução de diferenciação osteogênica para células tronco-mesenquimais humanas. Em conjunto, os dados desse estudo forneceram novas informações sobre a citocompatibilidade das NFCs de algodão e dos nanobiocompósitos contendo NFCs de algodão. As NFCs e os nanobiocompósitos induziram a proliferação e diferenciação das células-tronco, o que abre possibilidades para futuras aplicações desses biomateriais na terapia celular e regeneração óssea.Cellulose nanofibers (CNFs) are natural polymers that have mechanical properties that make them very attractive for applications in the construction of polymeric matrices applied to tissue engineering. The exogenous supply of a supportive polymer matrix in combination with stem cells emerges as a promising solution for inducing stem cell differentiation and repair of bone lesions. However, although cellulose is a biocompatible material, when materials are in nanoscale become more reactive, needing to investigate its potential toxic effect to ensure safe application. The hypothesis of this work is that NFCs are cytocompatible and when used as nanobiocomposite components induce the proliferation and differentiation of human mesenchymal stem cells. The general objective of this project was to evaluate the cytocompatibility of cotton CNFs and the potential of nanobiocomposites containing CNF and chitosan in promoting the proliferation and osteogenic differentiation of human mesenchymal stem cells. In experiment 1, the physicochemical characterization of CNFs was performed and the evaluation of the potential toxic effect and induction of osteogenic differentiation of suspended CNFs in human mesenchymal stem cells extracted from the dental pulp cultivated in vitro. In experiment 2, the synthesis was performed using the solvent evaporation technique and the physical-chemical characterization of the nanobiocomposite containing CNF and chitosan. HEK293 cells were grown on this matrix to test the cytocompatibility and the nanobiocomposite's ability to promote the adhesion and proliferation of human cells. Subsequently, in experiment 3, aiming at greater stability the physicochemical properties of the nanobiocomposite were altered and, again characterized and then human mesenchymal stem cells were cultivated on the nanobiocomposite to evaluate cytocompatibility and the induction potential of osteogenic differentiation. The results of experiment 1 revealed that cotton CNFs are needle-like elongated fiber, with diameters of about 6 - 18 nm, while their length ranged from 85 to 200 nm. The cellulose characteristic bands were obtained by spectroscopy and CNFs showed negative surface charges on their surface (–10 mV). In the conditions tested, there was no difference (p>0.05) in the rates of proliferation, viability, cell cycle and extracellular SOD levels. However, exposure to CNFs for 48 h decreased the expression levels of genes related to stress and apoptosis (ATF4, DAPK1 and BAX; p<0.05). Additionally, the activity results of alkaline phosphatase (p<0.05), von Kossa and Alizarin Red demonstrated that cotton CNFs demonstrated the ability to induce osteogenic in human mesenchymal stem cells. In experiment 2, characterization results showed that CNF increased nanotopography and decreased the rates of intumescent and degradation of CNF/chitosan nanobiocomposite (p<0.05). The cytocompatibility assays, nanobiocomposite promoted cell proliferation and increased area of HEK293 cells (p<0.05), but was cytotoxic after 72 h of culture. In experiment 3, the physicochemical properties of the nanobiocomposite were altered by improving cytocompatibility, as well as presented the ability to induce osteogenic differentiation for human mesenchymal stem cells. Together, the data in this study provided new information on the cytocompatibility of cotton CNFs and nanobiocomposites containing cotton CNFs. The CNFs and nanobiocomposites have induced the proliferation and differentiation of stem cells, which opens possibilities for future applications of these biomaterials in cell therapy and bone regeneration.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Ciências Biológicas: Imunologia e Doenças Infecto-Parasitárias/Genética e BiotecnologiaUFJFBrasilICB – Instituto de Ciências BiológicasAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS BIOLOGICASMétodos in vitroPolímeros naturaisCitocompatibilidadeEngenharia tecidualDiferenciação osteogênicaIn vitro methodsNatural polymersCytocompatibilityTissue engineeringOsteogenic differentiationProdução de nanobiocompósito contendo nanofibras de celulose para o cultivo de células-tronco mesenquimais e aplicação em reparo ósseoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFORIGINALrafaelladesouzasalomãozanette.pdfrafaelladesouzasalomãozanette.pdfapplication/pdf4282415https://repositorio.ufjf.br/jspui/bitstream/ufjf/11933/1/rafaelladesouzasalom%c3%a3ozanette.pdfda1317c25da08f7632b2e6ce08dc2140MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/11933/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTrafaelladesouzasalomãozanette.pdf.txtrafaelladesouzasalomãozanette.pdf.txtExtracted texttext/plain384888https://repositorio.ufjf.br/jspui/bitstream/ufjf/11933/4/rafaelladesouzasalom%c3%a3ozanette.pdf.txt9106111be71119219ebe21f9d5d56d52MD54THUMBNAILrafaelladesouzasalomãozanette.pdf.jpgrafaelladesouzasalomãozanette.pdf.jpgGenerated Thumbnailimage/jpeg1244https://repositorio.ufjf.br/jspui/bitstream/ufjf/11933/5/rafaelladesouzasalom%c3%a3ozanette.pdf.jpgd17f31d850fb5be15e4ac1b4a6a23799MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufjf.br/jspui/bitstream/ufjf/11933/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ufjf/119332020-11-28 04:07:59.159oai:hermes.cpd.ufjf.br:ufjf/11933Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2020-11-28T06:07:59Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Produção de nanobiocompósito contendo nanofibras de celulose para o cultivo de células-tronco mesenquimais e aplicação em reparo ósseo |
title |
Produção de nanobiocompósito contendo nanofibras de celulose para o cultivo de células-tronco mesenquimais e aplicação em reparo ósseo |
spellingShingle |
Produção de nanobiocompósito contendo nanofibras de celulose para o cultivo de células-tronco mesenquimais e aplicação em reparo ósseo Zanette, Rafaella de Souza Salomão CNPQ::CIENCIAS BIOLOGICAS Métodos in vitro Polímeros naturais Citocompatibilidade Engenharia tecidual Diferenciação osteogênica In vitro methods Natural polymers Cytocompatibility Tissue engineering Osteogenic differentiation |
title_short |
Produção de nanobiocompósito contendo nanofibras de celulose para o cultivo de células-tronco mesenquimais e aplicação em reparo ósseo |
title_full |
Produção de nanobiocompósito contendo nanofibras de celulose para o cultivo de células-tronco mesenquimais e aplicação em reparo ósseo |
title_fullStr |
Produção de nanobiocompósito contendo nanofibras de celulose para o cultivo de células-tronco mesenquimais e aplicação em reparo ósseo |
title_full_unstemmed |
Produção de nanobiocompósito contendo nanofibras de celulose para o cultivo de células-tronco mesenquimais e aplicação em reparo ósseo |
title_sort |
Produção de nanobiocompósito contendo nanofibras de celulose para o cultivo de células-tronco mesenquimais e aplicação em reparo ósseo |
author |
Zanette, Rafaella de Souza Salomão |
author_facet |
Zanette, Rafaella de Souza Salomão |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Pereira, Michele Munk |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8094404295191170 |
dc.contributor.referee1.fl_str_mv |
Alvarenga, Érika Lorena Fonseca Costa de |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/6549536708522132 |
dc.contributor.referee2.fl_str_mv |
Brandão, Humberto de Mello |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/4646271838089206 |
dc.contributor.referee3.fl_str_mv |
Pinto, Priscila de Faria |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/2845802069045973 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3322436504425467 |
dc.contributor.author.fl_str_mv |
Zanette, Rafaella de Souza Salomão |
contributor_str_mv |
Pereira, Michele Munk Alvarenga, Érika Lorena Fonseca Costa de Brandão, Humberto de Mello Pinto, Priscila de Faria |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS BIOLOGICAS |
topic |
CNPQ::CIENCIAS BIOLOGICAS Métodos in vitro Polímeros naturais Citocompatibilidade Engenharia tecidual Diferenciação osteogênica In vitro methods Natural polymers Cytocompatibility Tissue engineering Osteogenic differentiation |
dc.subject.por.fl_str_mv |
Métodos in vitro Polímeros naturais Citocompatibilidade Engenharia tecidual Diferenciação osteogênica In vitro methods Natural polymers Cytocompatibility Tissue engineering Osteogenic differentiation |
description |
As nanofibras de celulose (NFCs) são polímeros naturais que apresentam propriedades mecânicas que as tornam muito atrativas para aplicações na construção de matrizes poliméricas aplicadas à engenharia de tecidos. O fornecimento exógeno de uma matriz polimérica de suporte em associação com células-tronco surge como solução promissora para a indução de diferenciação de células-tronco e reparo de lesões ósseas. Porém, apesar da celulose ser um material biocompatível, quando os materiais estão em nanoescala tornam-se mais reativos, necessitando investigar seu potencial efeito tóxico para garantir uma aplicação segura. A hipótese desse trabalho é que as NFCs são citocompatíveis e quando utilizadas como componentes de nanobiocompósitos induzem a proliferação e diferenciação de células-tronco mesenquimais humanas. O objetivo geral deste projeto foi avaliar a citocompatibilidade das NFCs de algodão e o potencial do nanobiocompósito contendo NFC e quitosana em promover a proliferação e diferenciação osteogênica das células-tronco mesenquimais humanas. No experimento 1 foi realizada a caracterização físico-química das NFCs e a avaliação do potencial efeito tóxico e de indução de diferenciação osteogênica das NFCs em suspensão nas células-tronco mesenquimais humanas extraídas da polpa dentária cultivadas in vitro. No experimento 2, foi realizada a síntese pela técnica de evaporação do solvente e a caracterização físico-química do nanobiocompósito. Células HEK293 foram cultivadas sobre essa matriz para testar a citocompatibilidade e a capacidade do nanobiocompósito em promover a adesão e proliferação de células humanas. Posteriormente, no experimento 3, visando uma maior estabilidade as propriedades físico-químicas do nanobiocompósito foram alteradas e, novamente caracterizadas e, então as células-tronco mesenquimais humanas foram cultivadas sobre o nanobiocompósito para avaliar a citocompatibilidade e o potencial de indução de diferenciação osteogênica. Os resultados do experimento 1 revelaram que as NFCs de algodão se apresentam em forma de fibra alongada semelhante à agulha, com diâmetros de cerca de 6 a 18 nm, enquanto o seu comprimento variou de 85 a 200 nm. As bandas características da celulose foram obtidas pelas espectroscopias e as NFCs demonstraram exibir cargas superficiais negativas em sua superfície (–10 mV). Nas condições testadas, não houve diferença (p>0,05) nas taxas de proliferação, viabilidade, ciclo celular e níveis de SOD extracelular. No entanto, a exposição às NFCs por 48 h diminuiu os níveis de expressão dos genes relacionados ao estresse e apoptose (ATF4, DAPK1 e BAX;p<0,05). Adicionalmente, os resultados de atividade da fosfatase alcalina (p<0,05), von Kossa e Vermelho de alizarina demonstraram que as NFCs de algodão demonstraram capacidade de indução osteogênica nas células-tronco mesenquimais humanas. No experimento 2, os resultados de caracterização mostraram que a NFC aumentou a nanotopografia e diminuiu as taxas de intumescimento e degradação do nanobiocompósito NFC/quitosana (p<0,05). Nos ensaios de citocompatibilidade, o nanobiocompósito promoveu a proliferação celular e o aumento da área das células HEK293 (p<0,05), porém mostrou-se citotóxico após 72 h de cultura. No experimento 3, as propriedades físico-químicas do nanobiocompósito foram alteradas melhorando a citocompatibilidade, bem como apresentou capacidade de indução de diferenciação osteogênica para células tronco-mesenquimais humanas. Em conjunto, os dados desse estudo forneceram novas informações sobre a citocompatibilidade das NFCs de algodão e dos nanobiocompósitos contendo NFCs de algodão. As NFCs e os nanobiocompósitos induziram a proliferação e diferenciação das células-tronco, o que abre possibilidades para futuras aplicações desses biomateriais na terapia celular e regeneração óssea. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-11-27T12:38:23Z |
dc.date.available.fl_str_mv |
2020-11-26 2020-11-27T12:38:23Z |
dc.date.issued.fl_str_mv |
2020-03-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/11933 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/11933 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciências Biológicas: Imunologia e Doenças Infecto-Parasitárias/Genética e Biotecnologia |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICB – Instituto de Ciências Biológicas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11933/1/rafaelladesouzasalom%c3%a3ozanette.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/11933/3/license.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/11933/4/rafaelladesouzasalom%c3%a3ozanette.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/11933/5/rafaelladesouzasalom%c3%a3ozanette.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/11933/2/license_rdf |
bitstream.checksum.fl_str_mv |
da1317c25da08f7632b2e6ce08dc2140 8a4605be74aa9ea9d79846c1fba20a33 9106111be71119219ebe21f9d5d56d52 d17f31d850fb5be15e4ac1b4a6a23799 e39d27027a6cc9cb039ad269a5db8e34 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813193958514229248 |