Análise de objetivos e meta-heurísticas para problemas multiobjetivo de sequenciamento da produção
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/3639 |
Resumo: | O sequenciamento da produção é um processo importante de tomada de decisão usado nas indústrias a fim de alocar tarefas aos recursos. Dada a relevância desse tipo de problema, a pesquisa em programação da produção faz-se necessária. Este trabalho envolve o processo de otimização nos seguintes problemas: máquina única, máquinas paralelas idênticas, máquinas paralelas idênticas com release time, máquinas paralelas não relacionadas com setup time dependente da sequência e das máquinas, e flow shop flexível com setup time dependente da sequência e dos estágios. Além disso, múltiplos e conflitantes objetivos devem ser otimizados ao mesmo tempo na programação de produção, e a literatura vem mostrando avanço nesse sentido. O presente trabalho analisa os objetivos comumente adotados e propõe um conjunto de pares de objetivos. Análise de correlação e árvore de agregação são utilizadas aqui para indicar as possibilidades de agregação entre os objetivos conflitantes. Meta-heurísticas são comumente adotadas para resolver os problemas de escalonamento abordados neste trabalho e duas delas, o Non-dominated Sorting Genetic Algorithm II (NSGA-II) e a Presa Predador (PP), são aplicados aos problemas multiobjetivo propostos a fim de estudar suas adequações aos novos casos. O NSGA-II é um dos Algoritmos Genéticos mais utilizados em problemas de escalonamento. A PP é uma abordagem evolutiva recente para problemas de programação da produção, cada predador é responsável por tratar um único objetivo. Uma generalização para a técnica PP em que os predadores consideram de forma ponderada ambos os objetivos é também proposta. Adicionalmente, a influência da adoção de busca local sobre essas técnicas é analisada. Experimentos computacionais adotando hipervolume como métrica de desempenho foram conduzidos visando avaliar as técnicas computacionais consideradas neste trabalho e suas variantes. |
id |
UFJF_7dcc6fa3c004978684f58b39eab7eb44 |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/3639 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Barbosa, Helio José Corrêahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781805Y9Bernardino, Heder Soareshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4742940J5Fonseca, Leonardo Goliatt dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771799H1Gonçalves, Luciana Brugiolohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4718092D5Santos, Andre Gustavo doshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4796253Z5Silva, Eduardo Krempser dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4266021U6http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4260856Y7Pereira, Ana Amélia de Souza2017-03-13T19:24:03Z2017-03-102017-03-13T19:24:03Z2016-09-26https://repositorio.ufjf.br/jspui/handle/ufjf/3639O sequenciamento da produção é um processo importante de tomada de decisão usado nas indústrias a fim de alocar tarefas aos recursos. Dada a relevância desse tipo de problema, a pesquisa em programação da produção faz-se necessária. Este trabalho envolve o processo de otimização nos seguintes problemas: máquina única, máquinas paralelas idênticas, máquinas paralelas idênticas com release time, máquinas paralelas não relacionadas com setup time dependente da sequência e das máquinas, e flow shop flexível com setup time dependente da sequência e dos estágios. Além disso, múltiplos e conflitantes objetivos devem ser otimizados ao mesmo tempo na programação de produção, e a literatura vem mostrando avanço nesse sentido. O presente trabalho analisa os objetivos comumente adotados e propõe um conjunto de pares de objetivos. Análise de correlação e árvore de agregação são utilizadas aqui para indicar as possibilidades de agregação entre os objetivos conflitantes. Meta-heurísticas são comumente adotadas para resolver os problemas de escalonamento abordados neste trabalho e duas delas, o Non-dominated Sorting Genetic Algorithm II (NSGA-II) e a Presa Predador (PP), são aplicados aos problemas multiobjetivo propostos a fim de estudar suas adequações aos novos casos. O NSGA-II é um dos Algoritmos Genéticos mais utilizados em problemas de escalonamento. A PP é uma abordagem evolutiva recente para problemas de programação da produção, cada predador é responsável por tratar um único objetivo. Uma generalização para a técnica PP em que os predadores consideram de forma ponderada ambos os objetivos é também proposta. Adicionalmente, a influência da adoção de busca local sobre essas técnicas é analisada. Experimentos computacionais adotando hipervolume como métrica de desempenho foram conduzidos visando avaliar as técnicas computacionais consideradas neste trabalho e suas variantes.The sequencing of the production is an important process in decision-making and it is used in industries in order to allocate tasks to resources. Given the relevance of this kind of problem, the research in production scheduling is necessary. This study involves the process of optimization in the following problems: single machines, parallel identical machines, parallel identical machines with release time, unrelated parallel machines with setup time dependent on the sequence and on the machines, and flow shop which is flexible with setup time dependent on the sequence and stages. Moreover, multiple and conflicting objectives must be optimized at the same time in production scheduling and the literature has been showing progress in this sense. The present study analyses the commonly adopted objectives and suggests a set of objective pairs. Correlation analysis and aggregation trees are used here to indicate possibilities of aggregation among the conflicting objectives. Metaheuristics are commonly used to solve the sequencing problems addressed in this study and two of them, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Predator-Prey(PP), are applied to the proposed multiobjective problems in order to study their adjustments to the new cases. The NSGA-II is one of the most used genetic algorithms in sequencing problems. The PP is a recent evolutionary approach to scheduling problems, where each Predator is responsible for dealing with just one objective. A generalization of the PP technique, in which Predators considered both objectives using weights, is also proposed. In addition, the influence of the adoption of local search on these techniques is analyzed. Computational experiments adopting the hypervolume as a performance measure were conducted aiming at evaluating the computational techniques considered in this study and their variants.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Modelagem ComputacionalUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRAMeta-heurísticaSequenciamento da produçãoPresa predadorOtimização multiobjetivoMetaheuristicsSequencing of the productionPredator-PreyMultiobjective OptimizationAnálise de objetivos e meta-heurísticas para problemas multiobjetivo de sequenciamento da produçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTHUMBNAILanaameliadesouzapereira.pdf.jpganaameliadesouzapereira.pdf.jpgGenerated Thumbnailimage/jpeg1139https://repositorio.ufjf.br/jspui/bitstream/ufjf/3639/4/anaameliadesouzapereira.pdf.jpgddd5ba7c95b9c2cf7eb9fb49cb3d79a3MD54ORIGINALanaameliadesouzapereira.pdfanaameliadesouzapereira.pdfapplication/pdf7981340https://repositorio.ufjf.br/jspui/bitstream/ufjf/3639/1/anaameliadesouzapereira.pdf0446c7b651ada497c790051f8b213d35MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/3639/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52TEXTanaameliadesouzapereira.pdf.txtanaameliadesouzapereira.pdf.txtExtracted texttext/plain625752https://repositorio.ufjf.br/jspui/bitstream/ufjf/3639/3/anaameliadesouzapereira.pdf.txt0c6fad3b091e071b7578bd3190987831MD53ufjf/36392019-11-07 11:09:45.275oai:hermes.cpd.ufjf.br:ufjf/3639TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-11-07T13:09:45Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Análise de objetivos e meta-heurísticas para problemas multiobjetivo de sequenciamento da produção |
title |
Análise de objetivos e meta-heurísticas para problemas multiobjetivo de sequenciamento da produção |
spellingShingle |
Análise de objetivos e meta-heurísticas para problemas multiobjetivo de sequenciamento da produção Pereira, Ana Amélia de Souza CNPQ::CIENCIAS EXATAS E DA TERRA Meta-heurística Sequenciamento da produção Presa predador Otimização multiobjetivo Metaheuristics Sequencing of the production Predator-Prey Multiobjective Optimization |
title_short |
Análise de objetivos e meta-heurísticas para problemas multiobjetivo de sequenciamento da produção |
title_full |
Análise de objetivos e meta-heurísticas para problemas multiobjetivo de sequenciamento da produção |
title_fullStr |
Análise de objetivos e meta-heurísticas para problemas multiobjetivo de sequenciamento da produção |
title_full_unstemmed |
Análise de objetivos e meta-heurísticas para problemas multiobjetivo de sequenciamento da produção |
title_sort |
Análise de objetivos e meta-heurísticas para problemas multiobjetivo de sequenciamento da produção |
author |
Pereira, Ana Amélia de Souza |
author_facet |
Pereira, Ana Amélia de Souza |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Barbosa, Helio José Corrêa |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781805Y9 |
dc.contributor.advisor-co1.fl_str_mv |
Bernardino, Heder Soares |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4742940J5 |
dc.contributor.referee1.fl_str_mv |
Fonseca, Leonardo Goliatt da |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771799H1 |
dc.contributor.referee2.fl_str_mv |
Gonçalves, Luciana Brugiolo |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4718092D5 |
dc.contributor.referee3.fl_str_mv |
Santos, Andre Gustavo dos |
dc.contributor.referee3Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4796253Z5 |
dc.contributor.referee4.fl_str_mv |
Silva, Eduardo Krempser da |
dc.contributor.referee4Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4266021U6 |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4260856Y7 |
dc.contributor.author.fl_str_mv |
Pereira, Ana Amélia de Souza |
contributor_str_mv |
Barbosa, Helio José Corrêa Bernardino, Heder Soares Fonseca, Leonardo Goliatt da Gonçalves, Luciana Brugiolo Santos, Andre Gustavo dos Silva, Eduardo Krempser da |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA Meta-heurística Sequenciamento da produção Presa predador Otimização multiobjetivo Metaheuristics Sequencing of the production Predator-Prey Multiobjective Optimization |
dc.subject.por.fl_str_mv |
Meta-heurística Sequenciamento da produção Presa predador Otimização multiobjetivo Metaheuristics Sequencing of the production Predator-Prey Multiobjective Optimization |
description |
O sequenciamento da produção é um processo importante de tomada de decisão usado nas indústrias a fim de alocar tarefas aos recursos. Dada a relevância desse tipo de problema, a pesquisa em programação da produção faz-se necessária. Este trabalho envolve o processo de otimização nos seguintes problemas: máquina única, máquinas paralelas idênticas, máquinas paralelas idênticas com release time, máquinas paralelas não relacionadas com setup time dependente da sequência e das máquinas, e flow shop flexível com setup time dependente da sequência e dos estágios. Além disso, múltiplos e conflitantes objetivos devem ser otimizados ao mesmo tempo na programação de produção, e a literatura vem mostrando avanço nesse sentido. O presente trabalho analisa os objetivos comumente adotados e propõe um conjunto de pares de objetivos. Análise de correlação e árvore de agregação são utilizadas aqui para indicar as possibilidades de agregação entre os objetivos conflitantes. Meta-heurísticas são comumente adotadas para resolver os problemas de escalonamento abordados neste trabalho e duas delas, o Non-dominated Sorting Genetic Algorithm II (NSGA-II) e a Presa Predador (PP), são aplicados aos problemas multiobjetivo propostos a fim de estudar suas adequações aos novos casos. O NSGA-II é um dos Algoritmos Genéticos mais utilizados em problemas de escalonamento. A PP é uma abordagem evolutiva recente para problemas de programação da produção, cada predador é responsável por tratar um único objetivo. Uma generalização para a técnica PP em que os predadores consideram de forma ponderada ambos os objetivos é também proposta. Adicionalmente, a influência da adoção de busca local sobre essas técnicas é analisada. Experimentos computacionais adotando hipervolume como métrica de desempenho foram conduzidos visando avaliar as técnicas computacionais consideradas neste trabalho e suas variantes. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-09-26 |
dc.date.accessioned.fl_str_mv |
2017-03-13T19:24:03Z |
dc.date.available.fl_str_mv |
2017-03-10 2017-03-13T19:24:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/3639 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/3639 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Modelagem Computacional |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/3639/4/anaameliadesouzapereira.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/3639/1/anaameliadesouzapereira.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/3639/2/license.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/3639/3/anaameliadesouzapereira.pdf.txt |
bitstream.checksum.fl_str_mv |
ddd5ba7c95b9c2cf7eb9fb49cb3d79a3 0446c7b651ada497c790051f8b213d35 000e18a5aee6ca21bb5811ddf55fc37b 0c6fad3b091e071b7578bd3190987831 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813194030529380352 |