Solução de problemas de otimização com restrições usando estratégias de penalização adaptativa e um algoritmo do tipo PSO
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/3506 |
Resumo: | Nos últimos anos, várias meta-heurísticas têm sido adotadas para a solução de problemas de otimização com restrições. Uma dessas meta-heurísticas que se torna cada vez mais popular é a Otimização por Enxame de Partículas (Particle Swarm Optimization - PSO). O PSO é baseado na metáfora de como algumas espécies compartilham informações e, em seguida, usam essas informações para mover-se até os locais onde os alimentos estão localizados. A população é formada por um conjunto de indivíduos denominado partículas que representa possíveis soluções dentro de um espaço de busca multidimensinal. Neste trabalho, são analisados problemas clássicos de otimização com restrições onde um algoritmo PSO os trata como sendo sem restrições através da introdução de um método de penalização adaptativa (Adaptive Penalty Method - APM). O APM adapta o valor dos coeficientes de penalização de cada restrição fazendo uso de informações coletadas da população, tais como a média da função objetivo e o nível de violação de cada restrição. Diversos experimentos computacionais são realizados visando avaliar o desempenho do algoritmo considerando vários problemas testes encontrados na literatura. |
id |
UFJF_a32c88da22bcde2e8af76fcc557058f4 |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/3506 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Lemonge, Afonso Celso de Castrohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4707594U9Bernardino, Heder Soareshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4742940J5Hallak, Patricia Habibhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4796518E6Fonseca, Leonardo Goliatt dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771799H1Lima, Beatriz de Souza Leite Pires dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728580T3http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4356232Y8Carvalho, Érica da Costa Reis2017-03-06T19:32:37Z2017-03-022017-03-06T19:32:37Z2014-02-13https://repositorio.ufjf.br/jspui/handle/ufjf/3506Nos últimos anos, várias meta-heurísticas têm sido adotadas para a solução de problemas de otimização com restrições. Uma dessas meta-heurísticas que se torna cada vez mais popular é a Otimização por Enxame de Partículas (Particle Swarm Optimization - PSO). O PSO é baseado na metáfora de como algumas espécies compartilham informações e, em seguida, usam essas informações para mover-se até os locais onde os alimentos estão localizados. A população é formada por um conjunto de indivíduos denominado partículas que representa possíveis soluções dentro de um espaço de busca multidimensinal. Neste trabalho, são analisados problemas clássicos de otimização com restrições onde um algoritmo PSO os trata como sendo sem restrições através da introdução de um método de penalização adaptativa (Adaptive Penalty Method - APM). O APM adapta o valor dos coeficientes de penalização de cada restrição fazendo uso de informações coletadas da população, tais como a média da função objetivo e o nível de violação de cada restrição. Diversos experimentos computacionais são realizados visando avaliar o desempenho do algoritmo considerando vários problemas testes encontrados na literatura.In recent years, several meta-heuristics have been adopted for the solution of constrained optimization problems. One of these meta-heuristic that is becoming increasingly popular is the Particle Swarm Optimization - PSO. PSO is based on the metaphor of how some species share information and then use this information to move to the places where food is located. The population is formed by a group of individuals called particles representing possible solutions within a space multidimensional search. In this thesis, classical problems of constrained optimization where a PSO algorithm treats them as being unconstrained by introducing a method of adaptive penalty (Adaptive Penalty Method - APM) are analyzed. The APM adjusts the value of the penalty coeffcients of each constraint using the information collected from the population, such as the average of the objective function as well as the level of violation of each constraint. Several computational experiments are conducted to assess the performance the algorithm tests considering various problems found in the literature.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Modelagem ComputacionalUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRAOtimização por enxame de partículasOtimização com restriçõesMétodos de penalizaçãoParticle Swarm OptimizationConstrained optimizationPenalties methodsSolução de problemas de otimização com restrições usando estratégias de penalização adaptativa e um algoritmo do tipo PSOinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTEXTericadacostareiscarvalho.pdf.txtericadacostareiscarvalho.pdf.txtExtracted texttext/plain232765https://repositorio.ufjf.br/jspui/bitstream/ufjf/3506/3/ericadacostareiscarvalho.pdf.txt6715738b438d73fe4e7fc5f1ed033a0bMD53THUMBNAILericadacostareiscarvalho.pdf.jpgericadacostareiscarvalho.pdf.jpgGenerated Thumbnailimage/jpeg1194https://repositorio.ufjf.br/jspui/bitstream/ufjf/3506/4/ericadacostareiscarvalho.pdf.jpgac16f5ddcda2882277bca673a7197a1fMD54ORIGINALericadacostareiscarvalho.pdfericadacostareiscarvalho.pdfapplication/pdf5557018https://repositorio.ufjf.br/jspui/bitstream/ufjf/3506/1/ericadacostareiscarvalho.pdff6ffd53d6329e89b519786974a1b85e0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/3506/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52ufjf/35062019-11-07 11:09:48.781oai:hermes.cpd.ufjf.br:ufjf/3506TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-11-07T13:09:48Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Solução de problemas de otimização com restrições usando estratégias de penalização adaptativa e um algoritmo do tipo PSO |
title |
Solução de problemas de otimização com restrições usando estratégias de penalização adaptativa e um algoritmo do tipo PSO |
spellingShingle |
Solução de problemas de otimização com restrições usando estratégias de penalização adaptativa e um algoritmo do tipo PSO Carvalho, Érica da Costa Reis CNPQ::CIENCIAS EXATAS E DA TERRA Otimização por enxame de partículas Otimização com restrições Métodos de penalização Particle Swarm Optimization Constrained optimization Penalties methods |
title_short |
Solução de problemas de otimização com restrições usando estratégias de penalização adaptativa e um algoritmo do tipo PSO |
title_full |
Solução de problemas de otimização com restrições usando estratégias de penalização adaptativa e um algoritmo do tipo PSO |
title_fullStr |
Solução de problemas de otimização com restrições usando estratégias de penalização adaptativa e um algoritmo do tipo PSO |
title_full_unstemmed |
Solução de problemas de otimização com restrições usando estratégias de penalização adaptativa e um algoritmo do tipo PSO |
title_sort |
Solução de problemas de otimização com restrições usando estratégias de penalização adaptativa e um algoritmo do tipo PSO |
author |
Carvalho, Érica da Costa Reis |
author_facet |
Carvalho, Érica da Costa Reis |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Lemonge, Afonso Celso de Castro |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4707594U9 |
dc.contributor.advisor-co1.fl_str_mv |
Bernardino, Heder Soares |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4742940J5 |
dc.contributor.advisor-co2.fl_str_mv |
Hallak, Patricia Habib |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4796518E6 |
dc.contributor.referee1.fl_str_mv |
Fonseca, Leonardo Goliatt da |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771799H1 |
dc.contributor.referee2.fl_str_mv |
Lima, Beatriz de Souza Leite Pires de |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728580T3 |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4356232Y8 |
dc.contributor.author.fl_str_mv |
Carvalho, Érica da Costa Reis |
contributor_str_mv |
Lemonge, Afonso Celso de Castro Bernardino, Heder Soares Hallak, Patricia Habib Fonseca, Leonardo Goliatt da Lima, Beatriz de Souza Leite Pires de |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA Otimização por enxame de partículas Otimização com restrições Métodos de penalização Particle Swarm Optimization Constrained optimization Penalties methods |
dc.subject.por.fl_str_mv |
Otimização por enxame de partículas Otimização com restrições Métodos de penalização Particle Swarm Optimization Constrained optimization Penalties methods |
description |
Nos últimos anos, várias meta-heurísticas têm sido adotadas para a solução de problemas de otimização com restrições. Uma dessas meta-heurísticas que se torna cada vez mais popular é a Otimização por Enxame de Partículas (Particle Swarm Optimization - PSO). O PSO é baseado na metáfora de como algumas espécies compartilham informações e, em seguida, usam essas informações para mover-se até os locais onde os alimentos estão localizados. A população é formada por um conjunto de indivíduos denominado partículas que representa possíveis soluções dentro de um espaço de busca multidimensinal. Neste trabalho, são analisados problemas clássicos de otimização com restrições onde um algoritmo PSO os trata como sendo sem restrições através da introdução de um método de penalização adaptativa (Adaptive Penalty Method - APM). O APM adapta o valor dos coeficientes de penalização de cada restrição fazendo uso de informações coletadas da população, tais como a média da função objetivo e o nível de violação de cada restrição. Diversos experimentos computacionais são realizados visando avaliar o desempenho do algoritmo considerando vários problemas testes encontrados na literatura. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-02-13 |
dc.date.accessioned.fl_str_mv |
2017-03-06T19:32:37Z |
dc.date.available.fl_str_mv |
2017-03-02 2017-03-06T19:32:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/3506 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/3506 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Modelagem Computacional |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/3506/3/ericadacostareiscarvalho.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/3506/4/ericadacostareiscarvalho.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/3506/1/ericadacostareiscarvalho.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/3506/2/license.txt |
bitstream.checksum.fl_str_mv |
6715738b438d73fe4e7fc5f1ed033a0b ac16f5ddcda2882277bca673a7197a1f f6ffd53d6329e89b519786974a1b85e0 000e18a5aee6ca21bb5811ddf55fc37b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813194011077246976 |