Técnicas de otimização aplicadas à Identificação de sistemas dinâmicos

Detalhes bibliográficos
Autor(a) principal: Souza, Marina Borges Arantes de
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/15447
Resumo: A construção de um modelo confiável é um dos pilares do controle de sistemas autônomos. A identificação é um processo que extrai características de um processo para posterior análise e manipulação do sistema. Modelos matemáticos são um direcionamento do comportamento real de um processo. Entretanto, tais modelos exigem a entrada de alguns parâmetros específicos da operação do sistema. A estimação de parâmetros, é uma forma de identificação que objetiva afinar modelos para que eles se comportem de forma próxima à realidade. Para tanto, utiliza-se métodos de estimação, que aliados a um sinal de entrada eficiente, podem produzir bons resultados. O Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation (SOESGOPE) é um método apresentado pela literatura que combina a geração de sinais de excitação com a estimação de parâmetros. Embora a metodologia apresente resultados satisfatórios, deve-se analisá-la sob o ponto de vista de otimização, ou seja o quanto ele é confiável e robusto frente a diferentes configurações. Assim, este trabalho apresenta análises nesse aspecto e uma proposta de alteração quando for verificado uma falta de convergência. A aplicabilidade do método é potencializada em situações em que o modelo seja uma cópia razoável do comportamento real. Entretanto, em situações reais, não se pode garantir que um modelo matemático produza saídas similares ao processo real frente a uma mesma entrada. Para contornar esse problema, neste trabalho também é proposta uma técnica híbrida que é capaz de utilizar o modelo matemático como direcionamento e aprender características peculiares àquele processo. Tal modelo híbrido, composto por etapa de estimação e de aprendizado de comportamento, será capaz de corrigir certos erros do sistema real relacionados ao modelo e atingir saídas mais confiáveis através da combinação do modelo teórico com técnicas de aprendizado. Além disso, o SOESGOPE é um aliado ao processo de aprendizado visto que fornece sinais de excitação mais eficientes. A eficácia do método é comprovada através da aplicação em uma embarcação autônoma com características desafiadoras sob a ótica de identificação, reduzindo o erro de estimação de trajetória.
id UFJF_be0a76fc5b1dcc4f7c4af19aa58ce10f
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/15447
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Oliveira, Edimar José dehttp://buscatextual.cnpq.br/buscatextual/busca.doHonório, Leonardo de Mellohttp://buscatextual.cnpq.br/buscatextual/busca.doPoubel, Raphael Paulo Bragahttp://buscatextual.cnpq.br/buscatextual/busca.doPinto, Milena Fariahttp://buscatextual.cnpq.br/buscatextual/busca.doSantos, Alexandre Bessa doshttp://buscatextual.cnpq.br/buscatextual/busca.doOliveira, Leonardo Willer dehttp://buscatextual.cnpq.br/buscatextual/busca.dohttp://buscatextual.cnpq.br/buscatextual/busca.doSouza, Marina Borges Arantes de2023-05-26T15:01:25Z2023-05-262023-05-26T15:01:25Z2023-03-30https://repositorio.ufjf.br/jspui/handle/ufjf/15447A construção de um modelo confiável é um dos pilares do controle de sistemas autônomos. A identificação é um processo que extrai características de um processo para posterior análise e manipulação do sistema. Modelos matemáticos são um direcionamento do comportamento real de um processo. Entretanto, tais modelos exigem a entrada de alguns parâmetros específicos da operação do sistema. A estimação de parâmetros, é uma forma de identificação que objetiva afinar modelos para que eles se comportem de forma próxima à realidade. Para tanto, utiliza-se métodos de estimação, que aliados a um sinal de entrada eficiente, podem produzir bons resultados. O Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation (SOESGOPE) é um método apresentado pela literatura que combina a geração de sinais de excitação com a estimação de parâmetros. Embora a metodologia apresente resultados satisfatórios, deve-se analisá-la sob o ponto de vista de otimização, ou seja o quanto ele é confiável e robusto frente a diferentes configurações. Assim, este trabalho apresenta análises nesse aspecto e uma proposta de alteração quando for verificado uma falta de convergência. A aplicabilidade do método é potencializada em situações em que o modelo seja uma cópia razoável do comportamento real. Entretanto, em situações reais, não se pode garantir que um modelo matemático produza saídas similares ao processo real frente a uma mesma entrada. Para contornar esse problema, neste trabalho também é proposta uma técnica híbrida que é capaz de utilizar o modelo matemático como direcionamento e aprender características peculiares àquele processo. Tal modelo híbrido, composto por etapa de estimação e de aprendizado de comportamento, será capaz de corrigir certos erros do sistema real relacionados ao modelo e atingir saídas mais confiáveis através da combinação do modelo teórico com técnicas de aprendizado. Além disso, o SOESGOPE é um aliado ao processo de aprendizado visto que fornece sinais de excitação mais eficientes. A eficácia do método é comprovada através da aplicação em uma embarcação autônoma com características desafiadoras sob a ótica de identificação, reduzindo o erro de estimação de trajetória.Building a reliable model is one of the pillars of controlling autonomous systems. Identification is a process that extracts characteristics of a process for further analysis and manipulation of the system. Mathematical models are a guide to the real behavior of a process. However, such models require the input of some specific parameters of the system operation. Parameter estimation is a form of identification that aims to fine-tune models so that they behave as closely as possible to reality. Therefore, estimation methods together with an efficient input signal can produce good results. SOESGOPE is a method that combines excitation signal generation with parameter estimation. Although it presents satisfactory results, it should be analyzed from an optimization point of view, that is, how reliable and robust it is against different configurations. Thus, this work presents analysis in this aspect and a proposal for alteration when a lack of convergence is verified. The applicability of the method is enhanced in situations where the model is a reasonable copy of real behavior. However, in real situations, it is not possible to guarantee that a mathematical model will produce outputs similar to the real process when faced with the same input. To circumvent this problem, this work also proposes a hybrid technique that is able to use the mathematical model as a guide and learn characteristics peculiar to that process. Such a hybrid model will be able to correct certain errors of the real system related to the model and achieve more reliable outputs. Furthermore, SOESGOPE can count as an ally to the learning process since it provides more efficient excitation signals. To confirm the applicability of the proposed method, an autonomous boat is used for application and verification of the effectiveness of the method.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Engenharia ElétricaUFJFBrasilFaculdade de EngenhariaAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAIdentificação de sistemas dinâmicosEstimação de parâmetrosSistemas não linearesGeração de sinal de excitaçãoModelo híbridoIdentification of dynamical systemsParameter estimationNonlinear systemsExcitation signal generationHybrid modelTécnicas de otimização aplicadas à Identificação de sistemas dinâmicosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFORIGINALmarinaborgesarantesdesouza.pdfmarinaborgesarantesdesouza.pdfapplication/pdf2783167https://repositorio.ufjf.br/jspui/bitstream/ufjf/15447/1/marinaborgesarantesdesouza.pdf4984a47328b21ae8ed0e271cf3a63c8dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufjf.br/jspui/bitstream/ufjf/15447/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/15447/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTmarinaborgesarantesdesouza.pdf.txtmarinaborgesarantesdesouza.pdf.txtExtracted texttext/plain200370https://repositorio.ufjf.br/jspui/bitstream/ufjf/15447/4/marinaborgesarantesdesouza.pdf.txtea9d6e4c214075a450ccea57999a48ebMD54THUMBNAILmarinaborgesarantesdesouza.pdf.jpgmarinaborgesarantesdesouza.pdf.jpgGenerated Thumbnailimage/jpeg1120https://repositorio.ufjf.br/jspui/bitstream/ufjf/15447/5/marinaborgesarantesdesouza.pdf.jpge63423ae54f2d986756209926a88e43aMD55ufjf/154472023-05-27 03:14:37.005oai:hermes.cpd.ufjf.br:ufjf/15447Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2023-05-27T06:14:37Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv Técnicas de otimização aplicadas à Identificação de sistemas dinâmicos
title Técnicas de otimização aplicadas à Identificação de sistemas dinâmicos
spellingShingle Técnicas de otimização aplicadas à Identificação de sistemas dinâmicos
Souza, Marina Borges Arantes de
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Identificação de sistemas dinâmicos
Estimação de parâmetros
Sistemas não lineares
Geração de sinal de excitação
Modelo híbrido
Identification of dynamical systems
Parameter estimation
Nonlinear systems
Excitation signal generation
Hybrid model
title_short Técnicas de otimização aplicadas à Identificação de sistemas dinâmicos
title_full Técnicas de otimização aplicadas à Identificação de sistemas dinâmicos
title_fullStr Técnicas de otimização aplicadas à Identificação de sistemas dinâmicos
title_full_unstemmed Técnicas de otimização aplicadas à Identificação de sistemas dinâmicos
title_sort Técnicas de otimização aplicadas à Identificação de sistemas dinâmicos
author Souza, Marina Borges Arantes de
author_facet Souza, Marina Borges Arantes de
author_role author
dc.contributor.advisor1.fl_str_mv Oliveira, Edimar José de
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/busca.do
dc.contributor.advisor-co1.fl_str_mv Honório, Leonardo de Mello
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/busca.do
dc.contributor.referee1.fl_str_mv Poubel, Raphael Paulo Braga
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/busca.do
dc.contributor.referee2.fl_str_mv Pinto, Milena Faria
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/busca.do
dc.contributor.referee3.fl_str_mv Santos, Alexandre Bessa dos
dc.contributor.referee3Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/busca.do
dc.contributor.referee4.fl_str_mv Oliveira, Leonardo Willer de
dc.contributor.referee4Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/busca.do
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/busca.do
dc.contributor.author.fl_str_mv Souza, Marina Borges Arantes de
contributor_str_mv Oliveira, Edimar José de
Honório, Leonardo de Mello
Poubel, Raphael Paulo Braga
Pinto, Milena Faria
Santos, Alexandre Bessa dos
Oliveira, Leonardo Willer de
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Identificação de sistemas dinâmicos
Estimação de parâmetros
Sistemas não lineares
Geração de sinal de excitação
Modelo híbrido
Identification of dynamical systems
Parameter estimation
Nonlinear systems
Excitation signal generation
Hybrid model
dc.subject.por.fl_str_mv Identificação de sistemas dinâmicos
Estimação de parâmetros
Sistemas não lineares
Geração de sinal de excitação
Modelo híbrido
Identification of dynamical systems
Parameter estimation
Nonlinear systems
Excitation signal generation
Hybrid model
description A construção de um modelo confiável é um dos pilares do controle de sistemas autônomos. A identificação é um processo que extrai características de um processo para posterior análise e manipulação do sistema. Modelos matemáticos são um direcionamento do comportamento real de um processo. Entretanto, tais modelos exigem a entrada de alguns parâmetros específicos da operação do sistema. A estimação de parâmetros, é uma forma de identificação que objetiva afinar modelos para que eles se comportem de forma próxima à realidade. Para tanto, utiliza-se métodos de estimação, que aliados a um sinal de entrada eficiente, podem produzir bons resultados. O Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation (SOESGOPE) é um método apresentado pela literatura que combina a geração de sinais de excitação com a estimação de parâmetros. Embora a metodologia apresente resultados satisfatórios, deve-se analisá-la sob o ponto de vista de otimização, ou seja o quanto ele é confiável e robusto frente a diferentes configurações. Assim, este trabalho apresenta análises nesse aspecto e uma proposta de alteração quando for verificado uma falta de convergência. A aplicabilidade do método é potencializada em situações em que o modelo seja uma cópia razoável do comportamento real. Entretanto, em situações reais, não se pode garantir que um modelo matemático produza saídas similares ao processo real frente a uma mesma entrada. Para contornar esse problema, neste trabalho também é proposta uma técnica híbrida que é capaz de utilizar o modelo matemático como direcionamento e aprender características peculiares àquele processo. Tal modelo híbrido, composto por etapa de estimação e de aprendizado de comportamento, será capaz de corrigir certos erros do sistema real relacionados ao modelo e atingir saídas mais confiáveis através da combinação do modelo teórico com técnicas de aprendizado. Além disso, o SOESGOPE é um aliado ao processo de aprendizado visto que fornece sinais de excitação mais eficientes. A eficácia do método é comprovada através da aplicação em uma embarcação autônoma com características desafiadoras sob a ótica de identificação, reduzindo o erro de estimação de trajetória.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-05-26T15:01:25Z
dc.date.available.fl_str_mv 2023-05-26
2023-05-26T15:01:25Z
dc.date.issued.fl_str_mv 2023-03-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/15447
url https://repositorio.ufjf.br/jspui/handle/ufjf/15447
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Faculdade de Engenharia
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/15447/1/marinaborgesarantesdesouza.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/15447/2/license_rdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/15447/3/license.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/15447/4/marinaborgesarantesdesouza.pdf.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/15447/5/marinaborgesarantesdesouza.pdf.jpg
bitstream.checksum.fl_str_mv 4984a47328b21ae8ed0e271cf3a63c8d
4d2950bda3d176f570a9f8b328dfbbef
8a4605be74aa9ea9d79846c1fba20a33
ea9d6e4c214075a450ccea57999a48eb
e63423ae54f2d986756209926a88e43a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813193887381979136