Uma abordagem multiobjetivo usando programação genética cartesiana para projeto de circuitos digitais aproximados

Detalhes bibliográficos
Autor(a) principal: Lima, Leandro Silva
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/9946
Resumo: Os motivos que justificam estudos envolvendo Hardware Evolutivo (EHW), uma área voltada ao projeto de dispositivos eletrônicos que utiliza algoritmos evolutivos na concepção de determinada arquitetura como circuitos digitais e circuitos analógicos, são: (i) desenvolver modelos que não são alcançáveis quando técnicas tradicionais são empregadas; e (ii) projetar boas soluções para problemas e aplicações em que as especificações são incompletas ou não existem soluções ótimas. Neste cenário, a Computação Aproximada aparece como um novo paradigma em resposta à necessidade de melhorar o desempenho ou a eficiência energética de dispositivos eletrônicos. Na Computação Aproximada, a acurácia dos modelos pode ser relaxada, gerando projetos para usuários que estão dispostos a aceitar certas imprecisões, como em aplicações multimídia, circuitos aritméticos imprecisos, processos de compressão de imagens, aplicações de filtros digitais de resposta finita ao impulso (FIR) e resposta infinita ao impulso (IIR). Circuitos digitais obtidos via Computação Aproximada são classificados como circuitos digitais aproximados. Os requisitos de funcionalidade dos circuitos digitais aproximados são relaxados visando alcançar: (i) economia de energia, (ii) melhor velocidade de resposta, (iii) menor complexidade do circuito e (iv) menor área ocupada pelos componentes do circuito. Deseja-se investigar aqui o processo de construção de circuitos digitais combinacionais aproximados via Computação Evolucionista multiobjetivo. Para tal uma técnica de Programação Genética Cartesiana, baseada no conceito de dominância de Pareto e com tamanho populacional adaptativo para lidar com múltiplos objetivos é proposta neste trabalho visando projetar circuitos digitais aproximados analisando o compromisso entre atraso de propagação (delay), potência consumida e erro. Tal técnica é intitulada CGPMO+TPA. Circuitos digitais combinacionais como somadores, multiplicadores e Unidades Lógicas Aritméticas com até 16 entradas e 370 portas lógicas são considerados nos experimentos computacionais. O método CGPMO+TPA foi comparado com abordagens presentes na literatura e apresentou resultados satisfatórios.
id UFJF_d08c2b8f3e9225b9306d7e583d96d2d3
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/9946
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Bernardino, Heder Soareshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4742940J5Barbosa, Helio José Corrêahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781805Y9Aguiar, Eduardo Pestana dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4236602D7Manfrini, Francisco Augusto Limahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4137070Z6http://lattes.cnpq.br/Lima, Leandro Silva2019-05-08T15:29:51Z2019-05-032019-05-08T15:29:51Z2019-02-22https://repositorio.ufjf.br/jspui/handle/ufjf/9946Os motivos que justificam estudos envolvendo Hardware Evolutivo (EHW), uma área voltada ao projeto de dispositivos eletrônicos que utiliza algoritmos evolutivos na concepção de determinada arquitetura como circuitos digitais e circuitos analógicos, são: (i) desenvolver modelos que não são alcançáveis quando técnicas tradicionais são empregadas; e (ii) projetar boas soluções para problemas e aplicações em que as especificações são incompletas ou não existem soluções ótimas. Neste cenário, a Computação Aproximada aparece como um novo paradigma em resposta à necessidade de melhorar o desempenho ou a eficiência energética de dispositivos eletrônicos. Na Computação Aproximada, a acurácia dos modelos pode ser relaxada, gerando projetos para usuários que estão dispostos a aceitar certas imprecisões, como em aplicações multimídia, circuitos aritméticos imprecisos, processos de compressão de imagens, aplicações de filtros digitais de resposta finita ao impulso (FIR) e resposta infinita ao impulso (IIR). Circuitos digitais obtidos via Computação Aproximada são classificados como circuitos digitais aproximados. Os requisitos de funcionalidade dos circuitos digitais aproximados são relaxados visando alcançar: (i) economia de energia, (ii) melhor velocidade de resposta, (iii) menor complexidade do circuito e (iv) menor área ocupada pelos componentes do circuito. Deseja-se investigar aqui o processo de construção de circuitos digitais combinacionais aproximados via Computação Evolucionista multiobjetivo. Para tal uma técnica de Programação Genética Cartesiana, baseada no conceito de dominância de Pareto e com tamanho populacional adaptativo para lidar com múltiplos objetivos é proposta neste trabalho visando projetar circuitos digitais aproximados analisando o compromisso entre atraso de propagação (delay), potência consumida e erro. Tal técnica é intitulada CGPMO+TPA. Circuitos digitais combinacionais como somadores, multiplicadores e Unidades Lógicas Aritméticas com até 16 entradas e 370 portas lógicas são considerados nos experimentos computacionais. O método CGPMO+TPA foi comparado com abordagens presentes na literatura e apresentou resultados satisfatórios.The reasons that justify studies involving Hardware Evolutionary (EHW), an area dedicated to the design of electronic devices that uses evolutionary algorithms in the design of a certain architecture like digital circuits and analog circuits, are: (i) developing models that are not attainable when traditional techniques are employed; and (ii) designing good solutions to problems and applications where specifications are incomplete or there are no optimal solutions. In this scenario, Approximate Computing appears as a new paradigm in response to the need to improve the performance or energy efficiency of electronic devices. In Approximate Computing, the accuracy of the models can be relaxed, generating designs for users who are willing to accept certain inaccuracies, such as applications imprecise arithmetic circuits, image compression processes, digital finite impulse response (FIR) and infinite impulse response (IIR) applications. Digital circuits obtained through Approximate Computing are classified as circuits. The functional requirements of the approximate digital circuits are relaxed in order to achieve: (i) energy savings, (ii) better response speed, (iii) less complexity of the circuit and (iv) smaller area occupied by the circuit components. We wish to investigate here the process of construction of approximate combinational digital circuits via Multiobjective Evolutionary Computation. For such a technique of Genetic Programming Cartesiana, based on the concept of Pareto dominance and with population size adaptive to deal with multiple objectives is proposed in this work to design approximate digital circuits by analyzing the compromise between propagation delay, power consumed and error. Such a technique is entitled CGPMO + TPA. Combinational digital circuits such as adders, multipliers, and Arithmetic Logic Units with up to 16 inputs and 370 logic gates are considered in computational experiments. The CGPMO + TPA method was compared with approaches in the literature and presented satisfactory results.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Modelagem ComputacionalUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRAProgramação genética cartesianaComputação evolucionistaHardware evolutivoCircuitos aproximadosCartesian genetic programmingEvolutionary computationEvolutionary hardwareApproximate circuitsUma abordagem multiobjetivo usando programação genética cartesiana para projeto de circuitos digitais aproximadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTHUMBNAILleandrosilvalima.pdf.jpgleandrosilvalima.pdf.jpgGenerated Thumbnailimage/jpeg1098https://repositorio.ufjf.br/jspui/bitstream/ufjf/9946/4/leandrosilvalima.pdf.jpg9c07337a063ca8e57f43af7c1eae3826MD54ORIGINALleandrosilvalima.pdfleandrosilvalima.pdfapplication/pdf3281590https://repositorio.ufjf.br/jspui/bitstream/ufjf/9946/1/leandrosilvalima.pdfe329ea4e61cad4c3c30e227ca5cba18aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/9946/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52TEXTleandrosilvalima.pdf.txtleandrosilvalima.pdf.txtExtracted texttext/plain196824https://repositorio.ufjf.br/jspui/bitstream/ufjf/9946/3/leandrosilvalima.pdf.txtaea87fac34816c44478fff96c8c35babMD53ufjf/99462019-06-16 13:35:23.038oai:hermes.cpd.ufjf.br:ufjf/9946TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-06-16T16:35:23Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv Uma abordagem multiobjetivo usando programação genética cartesiana para projeto de circuitos digitais aproximados
title Uma abordagem multiobjetivo usando programação genética cartesiana para projeto de circuitos digitais aproximados
spellingShingle Uma abordagem multiobjetivo usando programação genética cartesiana para projeto de circuitos digitais aproximados
Lima, Leandro Silva
CNPQ::CIENCIAS EXATAS E DA TERRA
Programação genética cartesiana
Computação evolucionista
Hardware evolutivo
Circuitos aproximados
Cartesian genetic programming
Evolutionary computation
Evolutionary hardware
Approximate circuits
title_short Uma abordagem multiobjetivo usando programação genética cartesiana para projeto de circuitos digitais aproximados
title_full Uma abordagem multiobjetivo usando programação genética cartesiana para projeto de circuitos digitais aproximados
title_fullStr Uma abordagem multiobjetivo usando programação genética cartesiana para projeto de circuitos digitais aproximados
title_full_unstemmed Uma abordagem multiobjetivo usando programação genética cartesiana para projeto de circuitos digitais aproximados
title_sort Uma abordagem multiobjetivo usando programação genética cartesiana para projeto de circuitos digitais aproximados
author Lima, Leandro Silva
author_facet Lima, Leandro Silva
author_role author
dc.contributor.advisor1.fl_str_mv Bernardino, Heder Soares
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4742940J5
dc.contributor.advisor-co1.fl_str_mv Barbosa, Helio José Corrêa
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781805Y9
dc.contributor.referee1.fl_str_mv Aguiar, Eduardo Pestana de
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4236602D7
dc.contributor.referee2.fl_str_mv Manfrini, Francisco Augusto Lima
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4137070Z6
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/
dc.contributor.author.fl_str_mv Lima, Leandro Silva
contributor_str_mv Bernardino, Heder Soares
Barbosa, Helio José Corrêa
Aguiar, Eduardo Pestana de
Manfrini, Francisco Augusto Lima
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA
topic CNPQ::CIENCIAS EXATAS E DA TERRA
Programação genética cartesiana
Computação evolucionista
Hardware evolutivo
Circuitos aproximados
Cartesian genetic programming
Evolutionary computation
Evolutionary hardware
Approximate circuits
dc.subject.por.fl_str_mv Programação genética cartesiana
Computação evolucionista
Hardware evolutivo
Circuitos aproximados
Cartesian genetic programming
Evolutionary computation
Evolutionary hardware
Approximate circuits
description Os motivos que justificam estudos envolvendo Hardware Evolutivo (EHW), uma área voltada ao projeto de dispositivos eletrônicos que utiliza algoritmos evolutivos na concepção de determinada arquitetura como circuitos digitais e circuitos analógicos, são: (i) desenvolver modelos que não são alcançáveis quando técnicas tradicionais são empregadas; e (ii) projetar boas soluções para problemas e aplicações em que as especificações são incompletas ou não existem soluções ótimas. Neste cenário, a Computação Aproximada aparece como um novo paradigma em resposta à necessidade de melhorar o desempenho ou a eficiência energética de dispositivos eletrônicos. Na Computação Aproximada, a acurácia dos modelos pode ser relaxada, gerando projetos para usuários que estão dispostos a aceitar certas imprecisões, como em aplicações multimídia, circuitos aritméticos imprecisos, processos de compressão de imagens, aplicações de filtros digitais de resposta finita ao impulso (FIR) e resposta infinita ao impulso (IIR). Circuitos digitais obtidos via Computação Aproximada são classificados como circuitos digitais aproximados. Os requisitos de funcionalidade dos circuitos digitais aproximados são relaxados visando alcançar: (i) economia de energia, (ii) melhor velocidade de resposta, (iii) menor complexidade do circuito e (iv) menor área ocupada pelos componentes do circuito. Deseja-se investigar aqui o processo de construção de circuitos digitais combinacionais aproximados via Computação Evolucionista multiobjetivo. Para tal uma técnica de Programação Genética Cartesiana, baseada no conceito de dominância de Pareto e com tamanho populacional adaptativo para lidar com múltiplos objetivos é proposta neste trabalho visando projetar circuitos digitais aproximados analisando o compromisso entre atraso de propagação (delay), potência consumida e erro. Tal técnica é intitulada CGPMO+TPA. Circuitos digitais combinacionais como somadores, multiplicadores e Unidades Lógicas Aritméticas com até 16 entradas e 370 portas lógicas são considerados nos experimentos computacionais. O método CGPMO+TPA foi comparado com abordagens presentes na literatura e apresentou resultados satisfatórios.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-05-08T15:29:51Z
dc.date.available.fl_str_mv 2019-05-03
2019-05-08T15:29:51Z
dc.date.issued.fl_str_mv 2019-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/9946
url https://repositorio.ufjf.br/jspui/handle/ufjf/9946
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Modelagem Computacional
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICE – Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/9946/4/leandrosilvalima.pdf.jpg
https://repositorio.ufjf.br/jspui/bitstream/ufjf/9946/1/leandrosilvalima.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/9946/2/license.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/9946/3/leandrosilvalima.pdf.txt
bitstream.checksum.fl_str_mv 9c07337a063ca8e57f43af7c1eae3826
e329ea4e61cad4c3c30e227ca5cba18a
000e18a5aee6ca21bb5811ddf55fc37b
aea87fac34816c44478fff96c8c35bab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1801661276777086976