Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica

Detalhes bibliográficos
Autor(a) principal: Braga, Douglas de Oliveira Matos
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/6093
Resumo: O planejamento energético é base para as tomadas de decisões nas companhias de energia elétrica e, para isto, depende fortemente da disponibilidade de previsões acuradas para as cargas. Devido á inviabilidade de armazenamentos em larga-escala e o custo elevado de compras de energia a curto prazo, além da possibilidade de multas e sanções de órgãos governamentais, previsões em curto prazo são importantes para a otimização da alocação de recursos e da geração de energia. Neste trabalho utilizamos nove métodos univariados de séries temporais para a previsão de cargas a curto prazo, com horizontes de 1 a 24 horas a frente. Buscando melhorar a acurácia das previsões, propomos um método de combinação de previsões através de Regressão Simbólica, que combina de forma não-linear as previsões obtidas pelos nove métodos de séries temporais utilizados. Diferente de outros métodos não-lineares de regressão, a Regressão Simbólica não precisa de uma especificação previa da forma funcional. O método proposto é aplicado em uma série real da cidade do Rio de Janeiro (RJ), que contém cargas horárias de 104 semanas dos anos de 1996 e 1997. Comparamos, através de critérios indicados na literatura, os resultados obtidos pelo método proposto com os resultados obtidos por métodos tradicionais de combinação de previsões e ao resultado de simulações de redes neurais artificiais aplicados ao mesmo conjunto de dados. O método proposto obteve melhores resultados, que indicam que a não-linearidade pode ser aspecto importante para combinação de previsões no problema de previsão de carga a curto prazo
id UFJF_e6c7c033b3ce4ef4bb7f1b33daba8299
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/6093
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Hippert, Henrique Steinherzhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782250Z1Bastos, Ronaldo Rochahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781301J6Oliveira, Fabrízzio Condé dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766245H8http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4430890D1Braga, Douglas de Oliveira Matos2018-01-23T13:56:44Z2018-01-122018-01-23T13:56:44Z2017-08-31https://repositorio.ufjf.br/jspui/handle/ufjf/6093O planejamento energético é base para as tomadas de decisões nas companhias de energia elétrica e, para isto, depende fortemente da disponibilidade de previsões acuradas para as cargas. Devido á inviabilidade de armazenamentos em larga-escala e o custo elevado de compras de energia a curto prazo, além da possibilidade de multas e sanções de órgãos governamentais, previsões em curto prazo são importantes para a otimização da alocação de recursos e da geração de energia. Neste trabalho utilizamos nove métodos univariados de séries temporais para a previsão de cargas a curto prazo, com horizontes de 1 a 24 horas a frente. Buscando melhorar a acurácia das previsões, propomos um método de combinação de previsões através de Regressão Simbólica, que combina de forma não-linear as previsões obtidas pelos nove métodos de séries temporais utilizados. Diferente de outros métodos não-lineares de regressão, a Regressão Simbólica não precisa de uma especificação previa da forma funcional. O método proposto é aplicado em uma série real da cidade do Rio de Janeiro (RJ), que contém cargas horárias de 104 semanas dos anos de 1996 e 1997. Comparamos, através de critérios indicados na literatura, os resultados obtidos pelo método proposto com os resultados obtidos por métodos tradicionais de combinação de previsões e ao resultado de simulações de redes neurais artificiais aplicados ao mesmo conjunto de dados. O método proposto obteve melhores resultados, que indicam que a não-linearidade pode ser aspecto importante para combinação de previsões no problema de previsão de carga a curto prazoDecision-making in energy companies relies heavily on the availability of accurate load forecasts. Because storing electricity on a large scale is not viable, the cost of short-term energy purchasing is high, and there are government fines and sanctions for failing to supply energy on demand, short-term load forecasts are important for the optimization of resource allocation and energy production. In this work we used nine univariate time series methods for short-term load forecasts, with forecast horizons ranging from 1 to 24 hours ahead. In order to improve the accuracy of forecasts, we propose a method of combining forecasts through Symbolic Regression, which combines in a non-linear way the forecasts obtained by the nine methods of the time series used. Unlike other non-linear regression methods, Symbolic Regression does not need a previous specification of the function structure. We applied the proposed method to a real time series of the city of Rio de Janeiro (RJ), which contains data on hourly loads of 104 weeks in the years 1996 and 1997. We compare, through the criteria indicated in the literature, the results obtained by the proposed method with the results obtained by traditional methods of forecasts combination and the result obtained by artificial neural networks applied to the same dataset. The method has yielded better results, indicating that non-linearity may be important in combining predictions in short term load forecasts.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Modelagem ComputacionalUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRASéries temporaisPrevisão de cargas elétricasCombinação de previsõesRegressão simbólicaTime seriesEletrical load forecastingForecast combinationSymbolic regressionPrevisão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólicainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTHUMBNAILdouglasdeoliveiramatosbraga.pdf.jpgdouglasdeoliveiramatosbraga.pdf.jpgGenerated Thumbnailimage/jpeg1174https://repositorio.ufjf.br/jspui/bitstream/ufjf/6093/4/douglasdeoliveiramatosbraga.pdf.jpgae2eb8c059456b01ec9c6cef2e42e117MD54ORIGINALdouglasdeoliveiramatosbraga.pdfdouglasdeoliveiramatosbraga.pdfapplication/pdf1221207https://repositorio.ufjf.br/jspui/bitstream/ufjf/6093/1/douglasdeoliveiramatosbraga.pdf2e8c8b8de9aa188f87fe5670354d478cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/6093/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52TEXTdouglasdeoliveiramatosbraga.pdf.txtdouglasdeoliveiramatosbraga.pdf.txtExtracted texttext/plain111078https://repositorio.ufjf.br/jspui/bitstream/ufjf/6093/3/douglasdeoliveiramatosbraga.pdf.txt09dc6fb898ab926db4619aaa9d663ce8MD53ufjf/60932019-06-16 08:41:48.904oai:hermes.cpd.ufjf.br:ufjf/6093TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-06-16T11:41:48Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica
title Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica
spellingShingle Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica
Braga, Douglas de Oliveira Matos
CNPQ::CIENCIAS EXATAS E DA TERRA
Séries temporais
Previsão de cargas elétricas
Combinação de previsões
Regressão simbólica
Time series
Eletrical load forecasting
Forecast combination
Symbolic regression
title_short Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica
title_full Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica
title_fullStr Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica
title_full_unstemmed Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica
title_sort Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica
author Braga, Douglas de Oliveira Matos
author_facet Braga, Douglas de Oliveira Matos
author_role author
dc.contributor.advisor1.fl_str_mv Hippert, Henrique Steinherz
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782250Z1
dc.contributor.referee1.fl_str_mv Bastos, Ronaldo Rocha
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781301J6
dc.contributor.referee2.fl_str_mv Oliveira, Fabrízzio Condé de
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766245H8
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4430890D1
dc.contributor.author.fl_str_mv Braga, Douglas de Oliveira Matos
contributor_str_mv Hippert, Henrique Steinherz
Bastos, Ronaldo Rocha
Oliveira, Fabrízzio Condé de
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA
topic CNPQ::CIENCIAS EXATAS E DA TERRA
Séries temporais
Previsão de cargas elétricas
Combinação de previsões
Regressão simbólica
Time series
Eletrical load forecasting
Forecast combination
Symbolic regression
dc.subject.por.fl_str_mv Séries temporais
Previsão de cargas elétricas
Combinação de previsões
Regressão simbólica
Time series
Eletrical load forecasting
Forecast combination
Symbolic regression
description O planejamento energético é base para as tomadas de decisões nas companhias de energia elétrica e, para isto, depende fortemente da disponibilidade de previsões acuradas para as cargas. Devido á inviabilidade de armazenamentos em larga-escala e o custo elevado de compras de energia a curto prazo, além da possibilidade de multas e sanções de órgãos governamentais, previsões em curto prazo são importantes para a otimização da alocação de recursos e da geração de energia. Neste trabalho utilizamos nove métodos univariados de séries temporais para a previsão de cargas a curto prazo, com horizontes de 1 a 24 horas a frente. Buscando melhorar a acurácia das previsões, propomos um método de combinação de previsões através de Regressão Simbólica, que combina de forma não-linear as previsões obtidas pelos nove métodos de séries temporais utilizados. Diferente de outros métodos não-lineares de regressão, a Regressão Simbólica não precisa de uma especificação previa da forma funcional. O método proposto é aplicado em uma série real da cidade do Rio de Janeiro (RJ), que contém cargas horárias de 104 semanas dos anos de 1996 e 1997. Comparamos, através de critérios indicados na literatura, os resultados obtidos pelo método proposto com os resultados obtidos por métodos tradicionais de combinação de previsões e ao resultado de simulações de redes neurais artificiais aplicados ao mesmo conjunto de dados. O método proposto obteve melhores resultados, que indicam que a não-linearidade pode ser aspecto importante para combinação de previsões no problema de previsão de carga a curto prazo
publishDate 2017
dc.date.issued.fl_str_mv 2017-08-31
dc.date.accessioned.fl_str_mv 2018-01-23T13:56:44Z
dc.date.available.fl_str_mv 2018-01-12
2018-01-23T13:56:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/6093
url https://repositorio.ufjf.br/jspui/handle/ufjf/6093
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Modelagem Computacional
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICE – Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/6093/4/douglasdeoliveiramatosbraga.pdf.jpg
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6093/1/douglasdeoliveiramatosbraga.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6093/2/license.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6093/3/douglasdeoliveiramatosbraga.pdf.txt
bitstream.checksum.fl_str_mv ae2eb8c059456b01ec9c6cef2e42e117
2e8c8b8de9aa188f87fe5670354d478c
000e18a5aee6ca21bb5811ddf55fc37b
09dc6fb898ab926db4619aaa9d663ce8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813193989715656704