Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência

Detalhes bibliográficos
Autor(a) principal: Thomé, Thiago Goldoni
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/17261
Resumo: Este estudo investiga a eficácia das arquiteturas Edge-Fog-Cloud em ambientes distribuídos, com foco na otimização do processamento de dados e na redução da latência em aplicações críticas, como cidades inteligentes, fábricas e hospitais. O objetivo principal é avaliar como diferentes configurações dessas arquiteturas influenciam a capacidade de resposta do sistema em situações que demandam processamento de dados em tempo real e decisões ágeis. Utilizando uma metodologia que envolve a simulação de ambientes com uma variação de 1 a 25 dispositivos Edge e mantendo constante o número de Fogs em três e uma única Cloud, este trabalho explora a dinâmica de processamento e comunicação de dados em grande escala. O método empregado compreende a análise de diferentes bases de dados, cada uma representando um tipo específico de carga de trabalho em termos de volume e complexidade dos dados, desde parâmetros simples de saúde até dados complexos de monitoramento industrial. Através da quantificação do tempo de resposta e do desempenho geral do sistema em várias configurações, foi possível identificar pontos críticos de saturação e eficiência nas camadas de Fog e Cloud. Os resultados demonstram que, enquanto a computação em Fog oferece melhorias significativas na latência e no processamento local de dados, sua capacidade é limitada pela quantidade de recursos computacionais disponíveis, levando à necessidade de escalabilidade e planejamento adequado dos nós Fog. As conclusões do estudo destacam a importância de uma infraestrutura Edge-FogCloud bem dimensionada e adaptada às necessidades específicas de cada aplicação. Além disso, é reforçado que a possível independência da conexão com a internet oferecida pela computação em Fog pode ser decisiva em ambientes com conectividade limitada ou instável e que necessitem de respostas críticas para tomadas de decisão.
id UFJF_e6e938ce7157be5ef49a78f8c92300be
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/17261
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Dantas, Mario Antonio Ribeirohttp://lattes.cnpq.br/2900995280822495Menezes, Victor Ströele de Andradehttp://lattes.cnpq.br/7561791813071961Silva, Edelberto Francohttp://lattes.cnpq.br/3987091765361506Souto, Roberto Pintohttp://lattes.cnpq.br/1471432563506193http://lattes.cnpq.br/0137774452950529Thomé, Thiago Goldoni2024-08-26T11:02:31Z2024-08-232024-08-26T11:02:31Z2024-03-25https://repositorio.ufjf.br/jspui/handle/ufjf/17261Este estudo investiga a eficácia das arquiteturas Edge-Fog-Cloud em ambientes distribuídos, com foco na otimização do processamento de dados e na redução da latência em aplicações críticas, como cidades inteligentes, fábricas e hospitais. O objetivo principal é avaliar como diferentes configurações dessas arquiteturas influenciam a capacidade de resposta do sistema em situações que demandam processamento de dados em tempo real e decisões ágeis. Utilizando uma metodologia que envolve a simulação de ambientes com uma variação de 1 a 25 dispositivos Edge e mantendo constante o número de Fogs em três e uma única Cloud, este trabalho explora a dinâmica de processamento e comunicação de dados em grande escala. O método empregado compreende a análise de diferentes bases de dados, cada uma representando um tipo específico de carga de trabalho em termos de volume e complexidade dos dados, desde parâmetros simples de saúde até dados complexos de monitoramento industrial. Através da quantificação do tempo de resposta e do desempenho geral do sistema em várias configurações, foi possível identificar pontos críticos de saturação e eficiência nas camadas de Fog e Cloud. Os resultados demonstram que, enquanto a computação em Fog oferece melhorias significativas na latência e no processamento local de dados, sua capacidade é limitada pela quantidade de recursos computacionais disponíveis, levando à necessidade de escalabilidade e planejamento adequado dos nós Fog. As conclusões do estudo destacam a importância de uma infraestrutura Edge-FogCloud bem dimensionada e adaptada às necessidades específicas de cada aplicação. Além disso, é reforçado que a possível independência da conexão com a internet oferecida pela computação em Fog pode ser decisiva em ambientes com conectividade limitada ou instável e que necessitem de respostas críticas para tomadas de decisão.This study investigates the effectiveness of Edge-Fog-Cloud architectures in distributed environments, focusing on optimizing data processing and reducing latency in critical applications such as smart cities, factories, and hospitals. The main objective is to assess how different configurations of these architectures influence the system’s responsiveness in situations that require real-time data processing and agile decision-making. This work explores the dynamics of large-scale data processing and communication by using a methodology that involves simulating environments with a variation of 1 to 25 Edge devices and maintaining a constant number of three Fogs and a single Cloud. The employed method includes the analysis of different databases, each representing a specific type of workload in terms of data volume and complexity, from simple health parameters to complex industrial monitoring data. By quantifying response time and the system’s overall performance in various configurations, it was possible to identify critical saturation points and efficiency in the Fog and Cloud layers. The results show that while Fog Computing offers significant improvements in latency and local data processing, its capacity is limited by the amount of available computational resources, leading to the need for scalability and proper planning of Fog. The study’s conclusions highlight the importance of a well-dimensioned and adapted Edge-Fog-Cloud infrastructure to the specific needs of each application. Furthermore, it is emphasized that the potential independence from the internet connection offered by Fog Computing can be decisive in environments with limited or unstable connectivity and requiring critical decision-making responses.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Ciência da ComputaçãoUFJFBrasilICE – Instituto de Ciências ExatasAttribution-NonCommercial-ShareAlike 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-sa/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOArquitetura Edge-Fog-CloudOtimização distribuídaRedução de latênciaIoTIIoTDistributed optimizationLatency reductionUm estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latênciainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/2/license_rdf996f8b5afe3136b76594f43bfda24c5eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALthiagogoldonithome.pdfthiagogoldonithome.pdfapplication/pdf4062238https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/1/thiagogoldonithome.pdf3853231f2d1b1230314b9fa15ef768deMD51TEXTthiagogoldonithome.pdf.txtthiagogoldonithome.pdf.txtExtracted texttext/plain78521https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/4/thiagogoldonithome.pdf.txt43f3c95c167df7db244d95caa92cc02aMD54THUMBNAILthiagogoldonithome.pdf.jpgthiagogoldonithome.pdf.jpgGenerated Thumbnailimage/jpeg1165https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/5/thiagogoldonithome.pdf.jpg9fa496cc514390b7d67e5756f1fb2f2eMD55ufjf/172612024-08-27 03:04:27.238oai:hermes.cpd.ufjf.br:ufjf/17261Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2024-08-27T06:04:27Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência
title Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência
spellingShingle Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência
Thomé, Thiago Goldoni
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Arquitetura Edge-Fog-Cloud
Otimização distribuída
Redução de latência
IoT
IIoT
Distributed optimization
Latency reduction
title_short Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência
title_full Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência
title_fullStr Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência
title_full_unstemmed Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência
title_sort Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência
author Thomé, Thiago Goldoni
author_facet Thomé, Thiago Goldoni
author_role author
dc.contributor.advisor1.fl_str_mv Dantas, Mario Antonio Ribeiro
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2900995280822495
dc.contributor.advisor-co1.fl_str_mv Menezes, Victor Ströele de Andrade
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/7561791813071961
dc.contributor.referee1.fl_str_mv Silva, Edelberto Franco
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3987091765361506
dc.contributor.referee2.fl_str_mv Souto, Roberto Pinto
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1471432563506193
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0137774452950529
dc.contributor.author.fl_str_mv Thomé, Thiago Goldoni
contributor_str_mv Dantas, Mario Antonio Ribeiro
Menezes, Victor Ströele de Andrade
Silva, Edelberto Franco
Souto, Roberto Pinto
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Arquitetura Edge-Fog-Cloud
Otimização distribuída
Redução de latência
IoT
IIoT
Distributed optimization
Latency reduction
dc.subject.por.fl_str_mv Arquitetura Edge-Fog-Cloud
Otimização distribuída
Redução de latência
IoT
IIoT
Distributed optimization
Latency reduction
description Este estudo investiga a eficácia das arquiteturas Edge-Fog-Cloud em ambientes distribuídos, com foco na otimização do processamento de dados e na redução da latência em aplicações críticas, como cidades inteligentes, fábricas e hospitais. O objetivo principal é avaliar como diferentes configurações dessas arquiteturas influenciam a capacidade de resposta do sistema em situações que demandam processamento de dados em tempo real e decisões ágeis. Utilizando uma metodologia que envolve a simulação de ambientes com uma variação de 1 a 25 dispositivos Edge e mantendo constante o número de Fogs em três e uma única Cloud, este trabalho explora a dinâmica de processamento e comunicação de dados em grande escala. O método empregado compreende a análise de diferentes bases de dados, cada uma representando um tipo específico de carga de trabalho em termos de volume e complexidade dos dados, desde parâmetros simples de saúde até dados complexos de monitoramento industrial. Através da quantificação do tempo de resposta e do desempenho geral do sistema em várias configurações, foi possível identificar pontos críticos de saturação e eficiência nas camadas de Fog e Cloud. Os resultados demonstram que, enquanto a computação em Fog oferece melhorias significativas na latência e no processamento local de dados, sua capacidade é limitada pela quantidade de recursos computacionais disponíveis, levando à necessidade de escalabilidade e planejamento adequado dos nós Fog. As conclusões do estudo destacam a importância de uma infraestrutura Edge-FogCloud bem dimensionada e adaptada às necessidades específicas de cada aplicação. Além disso, é reforçado que a possível independência da conexão com a internet oferecida pela computação em Fog pode ser decisiva em ambientes com conectividade limitada ou instável e que necessitem de respostas críticas para tomadas de decisão.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-08-26T11:02:31Z
dc.date.available.fl_str_mv 2024-08-23
2024-08-26T11:02:31Z
dc.date.issued.fl_str_mv 2024-03-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/17261
url https://repositorio.ufjf.br/jspui/handle/ufjf/17261
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-nc-sa/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-nc-sa/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICE – Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/2/license_rdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/3/license.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/1/thiagogoldonithome.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/4/thiagogoldonithome.pdf.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/5/thiagogoldonithome.pdf.jpg
bitstream.checksum.fl_str_mv 996f8b5afe3136b76594f43bfda24c5e
8a4605be74aa9ea9d79846c1fba20a33
3853231f2d1b1230314b9fa15ef768de
43f3c95c167df7db244d95caa92cc02a
9fa496cc514390b7d67e5756f1fb2f2e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813194026502848512