Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/17261 |
Resumo: | Este estudo investiga a eficácia das arquiteturas Edge-Fog-Cloud em ambientes distribuídos, com foco na otimização do processamento de dados e na redução da latência em aplicações críticas, como cidades inteligentes, fábricas e hospitais. O objetivo principal é avaliar como diferentes configurações dessas arquiteturas influenciam a capacidade de resposta do sistema em situações que demandam processamento de dados em tempo real e decisões ágeis. Utilizando uma metodologia que envolve a simulação de ambientes com uma variação de 1 a 25 dispositivos Edge e mantendo constante o número de Fogs em três e uma única Cloud, este trabalho explora a dinâmica de processamento e comunicação de dados em grande escala. O método empregado compreende a análise de diferentes bases de dados, cada uma representando um tipo específico de carga de trabalho em termos de volume e complexidade dos dados, desde parâmetros simples de saúde até dados complexos de monitoramento industrial. Através da quantificação do tempo de resposta e do desempenho geral do sistema em várias configurações, foi possível identificar pontos críticos de saturação e eficiência nas camadas de Fog e Cloud. Os resultados demonstram que, enquanto a computação em Fog oferece melhorias significativas na latência e no processamento local de dados, sua capacidade é limitada pela quantidade de recursos computacionais disponíveis, levando à necessidade de escalabilidade e planejamento adequado dos nós Fog. As conclusões do estudo destacam a importância de uma infraestrutura Edge-FogCloud bem dimensionada e adaptada às necessidades específicas de cada aplicação. Além disso, é reforçado que a possível independência da conexão com a internet oferecida pela computação em Fog pode ser decisiva em ambientes com conectividade limitada ou instável e que necessitem de respostas críticas para tomadas de decisão. |
id |
UFJF_e6e938ce7157be5ef49a78f8c92300be |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/17261 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Dantas, Mario Antonio Ribeirohttp://lattes.cnpq.br/2900995280822495Menezes, Victor Ströele de Andradehttp://lattes.cnpq.br/7561791813071961Silva, Edelberto Francohttp://lattes.cnpq.br/3987091765361506Souto, Roberto Pintohttp://lattes.cnpq.br/1471432563506193http://lattes.cnpq.br/0137774452950529Thomé, Thiago Goldoni2024-08-26T11:02:31Z2024-08-232024-08-26T11:02:31Z2024-03-25https://repositorio.ufjf.br/jspui/handle/ufjf/17261Este estudo investiga a eficácia das arquiteturas Edge-Fog-Cloud em ambientes distribuídos, com foco na otimização do processamento de dados e na redução da latência em aplicações críticas, como cidades inteligentes, fábricas e hospitais. O objetivo principal é avaliar como diferentes configurações dessas arquiteturas influenciam a capacidade de resposta do sistema em situações que demandam processamento de dados em tempo real e decisões ágeis. Utilizando uma metodologia que envolve a simulação de ambientes com uma variação de 1 a 25 dispositivos Edge e mantendo constante o número de Fogs em três e uma única Cloud, este trabalho explora a dinâmica de processamento e comunicação de dados em grande escala. O método empregado compreende a análise de diferentes bases de dados, cada uma representando um tipo específico de carga de trabalho em termos de volume e complexidade dos dados, desde parâmetros simples de saúde até dados complexos de monitoramento industrial. Através da quantificação do tempo de resposta e do desempenho geral do sistema em várias configurações, foi possível identificar pontos críticos de saturação e eficiência nas camadas de Fog e Cloud. Os resultados demonstram que, enquanto a computação em Fog oferece melhorias significativas na latência e no processamento local de dados, sua capacidade é limitada pela quantidade de recursos computacionais disponíveis, levando à necessidade de escalabilidade e planejamento adequado dos nós Fog. As conclusões do estudo destacam a importância de uma infraestrutura Edge-FogCloud bem dimensionada e adaptada às necessidades específicas de cada aplicação. Além disso, é reforçado que a possível independência da conexão com a internet oferecida pela computação em Fog pode ser decisiva em ambientes com conectividade limitada ou instável e que necessitem de respostas críticas para tomadas de decisão.This study investigates the effectiveness of Edge-Fog-Cloud architectures in distributed environments, focusing on optimizing data processing and reducing latency in critical applications such as smart cities, factories, and hospitals. The main objective is to assess how different configurations of these architectures influence the system’s responsiveness in situations that require real-time data processing and agile decision-making. This work explores the dynamics of large-scale data processing and communication by using a methodology that involves simulating environments with a variation of 1 to 25 Edge devices and maintaining a constant number of three Fogs and a single Cloud. The employed method includes the analysis of different databases, each representing a specific type of workload in terms of data volume and complexity, from simple health parameters to complex industrial monitoring data. By quantifying response time and the system’s overall performance in various configurations, it was possible to identify critical saturation points and efficiency in the Fog and Cloud layers. The results show that while Fog Computing offers significant improvements in latency and local data processing, its capacity is limited by the amount of available computational resources, leading to the need for scalability and proper planning of Fog. The study’s conclusions highlight the importance of a well-dimensioned and adapted Edge-Fog-Cloud infrastructure to the specific needs of each application. Furthermore, it is emphasized that the potential independence from the internet connection offered by Fog Computing can be decisive in environments with limited or unstable connectivity and requiring critical decision-making responses.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Ciência da ComputaçãoUFJFBrasilICE – Instituto de Ciências ExatasAttribution-NonCommercial-ShareAlike 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-sa/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOArquitetura Edge-Fog-CloudOtimização distribuídaRedução de latênciaIoTIIoTDistributed optimizationLatency reductionUm estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latênciainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/2/license_rdf996f8b5afe3136b76594f43bfda24c5eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALthiagogoldonithome.pdfthiagogoldonithome.pdfapplication/pdf4062238https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/1/thiagogoldonithome.pdf3853231f2d1b1230314b9fa15ef768deMD51TEXTthiagogoldonithome.pdf.txtthiagogoldonithome.pdf.txtExtracted texttext/plain78521https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/4/thiagogoldonithome.pdf.txt43f3c95c167df7db244d95caa92cc02aMD54THUMBNAILthiagogoldonithome.pdf.jpgthiagogoldonithome.pdf.jpgGenerated Thumbnailimage/jpeg1165https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/5/thiagogoldonithome.pdf.jpg9fa496cc514390b7d67e5756f1fb2f2eMD55ufjf/172612024-08-27 03:04:27.238oai:hermes.cpd.ufjf.br:ufjf/17261Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2024-08-27T06:04:27Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência |
title |
Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência |
spellingShingle |
Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência Thomé, Thiago Goldoni CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Arquitetura Edge-Fog-Cloud Otimização distribuída Redução de latência IoT IIoT Distributed optimization Latency reduction |
title_short |
Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência |
title_full |
Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência |
title_fullStr |
Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência |
title_full_unstemmed |
Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência |
title_sort |
Um estudo da arquitetura Edge-Fog-Cloud com foco na otimização distribuída do processamento e na redução da latência |
author |
Thomé, Thiago Goldoni |
author_facet |
Thomé, Thiago Goldoni |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Dantas, Mario Antonio Ribeiro |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2900995280822495 |
dc.contributor.advisor-co1.fl_str_mv |
Menezes, Victor Ströele de Andrade |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/7561791813071961 |
dc.contributor.referee1.fl_str_mv |
Silva, Edelberto Franco |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3987091765361506 |
dc.contributor.referee2.fl_str_mv |
Souto, Roberto Pinto |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/1471432563506193 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0137774452950529 |
dc.contributor.author.fl_str_mv |
Thomé, Thiago Goldoni |
contributor_str_mv |
Dantas, Mario Antonio Ribeiro Menezes, Victor Ströele de Andrade Silva, Edelberto Franco Souto, Roberto Pinto |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Arquitetura Edge-Fog-Cloud Otimização distribuída Redução de latência IoT IIoT Distributed optimization Latency reduction |
dc.subject.por.fl_str_mv |
Arquitetura Edge-Fog-Cloud Otimização distribuída Redução de latência IoT IIoT Distributed optimization Latency reduction |
description |
Este estudo investiga a eficácia das arquiteturas Edge-Fog-Cloud em ambientes distribuídos, com foco na otimização do processamento de dados e na redução da latência em aplicações críticas, como cidades inteligentes, fábricas e hospitais. O objetivo principal é avaliar como diferentes configurações dessas arquiteturas influenciam a capacidade de resposta do sistema em situações que demandam processamento de dados em tempo real e decisões ágeis. Utilizando uma metodologia que envolve a simulação de ambientes com uma variação de 1 a 25 dispositivos Edge e mantendo constante o número de Fogs em três e uma única Cloud, este trabalho explora a dinâmica de processamento e comunicação de dados em grande escala. O método empregado compreende a análise de diferentes bases de dados, cada uma representando um tipo específico de carga de trabalho em termos de volume e complexidade dos dados, desde parâmetros simples de saúde até dados complexos de monitoramento industrial. Através da quantificação do tempo de resposta e do desempenho geral do sistema em várias configurações, foi possível identificar pontos críticos de saturação e eficiência nas camadas de Fog e Cloud. Os resultados demonstram que, enquanto a computação em Fog oferece melhorias significativas na latência e no processamento local de dados, sua capacidade é limitada pela quantidade de recursos computacionais disponíveis, levando à necessidade de escalabilidade e planejamento adequado dos nós Fog. As conclusões do estudo destacam a importância de uma infraestrutura Edge-FogCloud bem dimensionada e adaptada às necessidades específicas de cada aplicação. Além disso, é reforçado que a possível independência da conexão com a internet oferecida pela computação em Fog pode ser decisiva em ambientes com conectividade limitada ou instável e que necessitem de respostas críticas para tomadas de decisão. |
publishDate |
2024 |
dc.date.accessioned.fl_str_mv |
2024-08-26T11:02:31Z |
dc.date.available.fl_str_mv |
2024-08-23 2024-08-26T11:02:31Z |
dc.date.issued.fl_str_mv |
2024-03-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/17261 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/17261 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-ShareAlike 3.0 Brazil http://creativecommons.org/licenses/by-nc-sa/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 3.0 Brazil http://creativecommons.org/licenses/by-nc-sa/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/2/license_rdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/3/license.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/1/thiagogoldonithome.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/4/thiagogoldonithome.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/17261/5/thiagogoldonithome.pdf.jpg |
bitstream.checksum.fl_str_mv |
996f8b5afe3136b76594f43bfda24c5e 8a4605be74aa9ea9d79846c1fba20a33 3853231f2d1b1230314b9fa15ef768de 43f3c95c167df7db244d95caa92cc02a 9fa496cc514390b7d67e5756f1fb2f2e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813194026502848512 |