Integração de dados petrofísicos, petrográficos e de técnicas de inteligência computacional para a caracterização litológica de reservatórios de petróleo

Detalhes bibliográficos
Autor(a) principal: Saporetti, Camila Martins
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/11898
Resumo: A litologia é a descrição das características físicas e mineralógica de uma unidade rochosa ou formação rochosa. Sua definição em poços de petróleo por meio de múltiplos perfis elétricos e geofísicos tem um papel importante no processo de caracterização do reservatório. A partir da litologia, pode-se gerar modelos que serão a base através da qual cálculos petrofísicos são feitos, e em seguida, podem ser usados em simuladores de fluxo para compreender o comportamento de um campo de petróleo. A identificação pode ser realizada por métodos diretos e indiretos, mas nem sempre são viáveis devido ao custo ou imprecisão dos resultados. Modelos preditivos de distribuição de heterogeneidades e qualidade em reservatórios de hidrocarbonetos são fundamentais para exploração e otimização da produção de campos de óleo e gás. As heterogeneidades são determinadas por meio das distintas petrofácies, um conjunto de características petrográficas que especificam um grupo de rochas. O procedimento de identificar petrofácies geralmente é longo, o que faz com que a automatização seja necessária para agilizar o processo, e assim a análise seja concluída rapidamente. Através de sua determinação pode-se obter informações sobre as rochas reservatório, tais como: sua história deposicional e diagenética, estrutura do poro e mineralogia. Nesse contexto, técnicas de inteligência computacional aparecem como uma alternativa para discriminar litologia e petrofácies. Este trabalho objetiva o desenvolvimento de uma metodologia capaz de auxiliar na caracterização de reservatórios petrolíferos. A litologia e petrofácies foram derivadas do reconhecimento de padrões de características petrofísicas e petrográficas respectivamente. As características foram analisadas por meio de Análise de Componentes Principais. Métodos supervisionados foram empregados para classificar amostras e avaliar como novas amostras serão distribuídas. Para encontrar os classificadores ótimos, o método de evolução diferencial foi aplicado. Técnicas para aumentar a dimensionalidade foram utilizadas como uma forma de avaliar o comportamento dos métodos utilizados. Foi utilizado a Análise Filogenética como uma ferramenta para entender o processo de diagênese que ocorre durante o processo de litificação da rocha sedimentar e identificação dos eventos que ocorreram durante este processo. A metodologia apresentada surge como uma alternativa para auxiliar o geólogo/petrólogo na caracterização de um reservatório de petróleo.
id UFJF_f1e0a39d479203d57f1911b14d25b969
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/11898
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Fonseca, Leonardo Goliatt dahttp://lattes.cnpq.br/9030707448549156Pereira, Egbertohttp://lattes.cnpq.br/1043606043814998Campos, Luciana Conceição Diashttp://lattes.cnpq.br/6986138014246480Bernardino, Heder Soareshttp://lattes.cnpq.br/7733681743453751Oliveira, Leonardo Costa dehttp://lattes.cnpq.br/Silva, Eduardo Krempser dahttp://lattes.cnpq.br/5399601756512708http://lattes.cnpq.br/4862105931908699Saporetti, Camila Martins2020-11-23T15:53:59Z2020-11-232020-11-23T15:53:59Z2020-08-12https://repositorio.ufjf.br/jspui/handle/ufjf/11898A litologia é a descrição das características físicas e mineralógica de uma unidade rochosa ou formação rochosa. Sua definição em poços de petróleo por meio de múltiplos perfis elétricos e geofísicos tem um papel importante no processo de caracterização do reservatório. A partir da litologia, pode-se gerar modelos que serão a base através da qual cálculos petrofísicos são feitos, e em seguida, podem ser usados em simuladores de fluxo para compreender o comportamento de um campo de petróleo. A identificação pode ser realizada por métodos diretos e indiretos, mas nem sempre são viáveis devido ao custo ou imprecisão dos resultados. Modelos preditivos de distribuição de heterogeneidades e qualidade em reservatórios de hidrocarbonetos são fundamentais para exploração e otimização da produção de campos de óleo e gás. As heterogeneidades são determinadas por meio das distintas petrofácies, um conjunto de características petrográficas que especificam um grupo de rochas. O procedimento de identificar petrofácies geralmente é longo, o que faz com que a automatização seja necessária para agilizar o processo, e assim a análise seja concluída rapidamente. Através de sua determinação pode-se obter informações sobre as rochas reservatório, tais como: sua história deposicional e diagenética, estrutura do poro e mineralogia. Nesse contexto, técnicas de inteligência computacional aparecem como uma alternativa para discriminar litologia e petrofácies. Este trabalho objetiva o desenvolvimento de uma metodologia capaz de auxiliar na caracterização de reservatórios petrolíferos. A litologia e petrofácies foram derivadas do reconhecimento de padrões de características petrofísicas e petrográficas respectivamente. As características foram analisadas por meio de Análise de Componentes Principais. Métodos supervisionados foram empregados para classificar amostras e avaliar como novas amostras serão distribuídas. Para encontrar os classificadores ótimos, o método de evolução diferencial foi aplicado. Técnicas para aumentar a dimensionalidade foram utilizadas como uma forma de avaliar o comportamento dos métodos utilizados. Foi utilizado a Análise Filogenética como uma ferramenta para entender o processo de diagênese que ocorre durante o processo de litificação da rocha sedimentar e identificação dos eventos que ocorreram durante este processo. A metodologia apresentada surge como uma alternativa para auxiliar o geólogo/petrólogo na caracterização de um reservatório de petróleo.Lithology is the description of the physical and mineralogical characteristics of a rock unit or rock formation. Its definition in oil wells through multiple electrical and geophysical profiles has an important role in the reservoir characterization process. From the lithology, models can be generated based on which petrophysical calculations are made. Then they can be used in flow simulators to understand the behavior of an oil field. Direct and indirect methods can carry out the identification, but they are not always feasible due to the results’ cost or imprecision. Predictive models for the distribution of heterogeneities and quality in hydrocarbon reservoirs are fundamental for exploring and optimizing the production of oil and gas fields. Heterogeneities are determined employing different petrofacies, a set of petrographic characteristics that specify a group of rocks. The procedure of identifying petrofacies is generally long, which makes automation necessary to speed up the process, and thus the analysis is completed quickly. It is possible to obtain information about the reservoir rocks through its determination, such as their depositional and diagenetic history, pore structure, and mineralogy. In this context, computational intelligence techniques appear as an alternative to discriminate lithology and petrofacies. This work aims to develop a methodology capable of assisting in the characterization of oil reservoirs. Lithology and petrofacies were derived from the recognition of patterns of petrophysical and petrographic characteristics, respectively. The characteristics were analyzed through Principal Component Analysis. Supervised methods were used to classify samples and evaluate how new samples will be distributed. To find the optimal classifiers, the differential evolution method was applied. Techniques to increase dimensionality were used as a way to evaluate the behavior of the methods used. Phylogenetic Analysis was used to understand the process of diagenesis that occurs during the lithification process of sedimentary rock and the identification of the events that occurred during this process. The presented methodology appears as an alternative to assist the geologist/petrologist in characterizing an oil reservoir.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Modelagem ComputacionalUFJFBrasilICE – Instituto de Ciências ExatasAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRAInteligência computacionalLitologiaCaracterização de reservatórioComputational intelligenceLithologyReservoir characterizationIntegração de dados petrofísicos, petrográficos e de técnicas de inteligência computacional para a caracterização litológica de reservatórios de petróleoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFORIGINALcamilamartinssaporetti.pdfcamilamartinssaporetti.pdfPDF/Aapplication/pdf51829335https://repositorio.ufjf.br/jspui/bitstream/ufjf/11898/1/camilamartinssaporetti.pdfb9260cff2f9e652c0f0b3fb5cd2967b0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufjf.br/jspui/bitstream/ufjf/11898/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/11898/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTcamilamartinssaporetti.pdf.txtcamilamartinssaporetti.pdf.txtExtracted texttext/plain238420https://repositorio.ufjf.br/jspui/bitstream/ufjf/11898/4/camilamartinssaporetti.pdf.txt4a48586b5bf960f2bf28df6f7f65c26dMD54THUMBNAILcamilamartinssaporetti.pdf.jpgcamilamartinssaporetti.pdf.jpgGenerated Thumbnailimage/jpeg1172https://repositorio.ufjf.br/jspui/bitstream/ufjf/11898/5/camilamartinssaporetti.pdf.jpgefe45c9669924779e43acc5206fb2306MD55ufjf/118982020-11-24 04:08:03.559oai:hermes.cpd.ufjf.br:ufjf/11898Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2020-11-24T06:08:03Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv Integração de dados petrofísicos, petrográficos e de técnicas de inteligência computacional para a caracterização litológica de reservatórios de petróleo
title Integração de dados petrofísicos, petrográficos e de técnicas de inteligência computacional para a caracterização litológica de reservatórios de petróleo
spellingShingle Integração de dados petrofísicos, petrográficos e de técnicas de inteligência computacional para a caracterização litológica de reservatórios de petróleo
Saporetti, Camila Martins
CNPQ::CIENCIAS EXATAS E DA TERRA
Inteligência computacional
Litologia
Caracterização de reservatório
Computational intelligence
Lithology
Reservoir characterization
title_short Integração de dados petrofísicos, petrográficos e de técnicas de inteligência computacional para a caracterização litológica de reservatórios de petróleo
title_full Integração de dados petrofísicos, petrográficos e de técnicas de inteligência computacional para a caracterização litológica de reservatórios de petróleo
title_fullStr Integração de dados petrofísicos, petrográficos e de técnicas de inteligência computacional para a caracterização litológica de reservatórios de petróleo
title_full_unstemmed Integração de dados petrofísicos, petrográficos e de técnicas de inteligência computacional para a caracterização litológica de reservatórios de petróleo
title_sort Integração de dados petrofísicos, petrográficos e de técnicas de inteligência computacional para a caracterização litológica de reservatórios de petróleo
author Saporetti, Camila Martins
author_facet Saporetti, Camila Martins
author_role author
dc.contributor.advisor1.fl_str_mv Fonseca, Leonardo Goliatt da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9030707448549156
dc.contributor.advisor-co1.fl_str_mv Pereira, Egberto
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/1043606043814998
dc.contributor.referee1.fl_str_mv Campos, Luciana Conceição Dias
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6986138014246480
dc.contributor.referee2.fl_str_mv Bernardino, Heder Soares
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7733681743453751
dc.contributor.referee3.fl_str_mv Oliveira, Leonardo Costa de
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/
dc.contributor.referee4.fl_str_mv Silva, Eduardo Krempser da
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/5399601756512708
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4862105931908699
dc.contributor.author.fl_str_mv Saporetti, Camila Martins
contributor_str_mv Fonseca, Leonardo Goliatt da
Pereira, Egberto
Campos, Luciana Conceição Dias
Bernardino, Heder Soares
Oliveira, Leonardo Costa de
Silva, Eduardo Krempser da
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA
topic CNPQ::CIENCIAS EXATAS E DA TERRA
Inteligência computacional
Litologia
Caracterização de reservatório
Computational intelligence
Lithology
Reservoir characterization
dc.subject.por.fl_str_mv Inteligência computacional
Litologia
Caracterização de reservatório
Computational intelligence
Lithology
Reservoir characterization
description A litologia é a descrição das características físicas e mineralógica de uma unidade rochosa ou formação rochosa. Sua definição em poços de petróleo por meio de múltiplos perfis elétricos e geofísicos tem um papel importante no processo de caracterização do reservatório. A partir da litologia, pode-se gerar modelos que serão a base através da qual cálculos petrofísicos são feitos, e em seguida, podem ser usados em simuladores de fluxo para compreender o comportamento de um campo de petróleo. A identificação pode ser realizada por métodos diretos e indiretos, mas nem sempre são viáveis devido ao custo ou imprecisão dos resultados. Modelos preditivos de distribuição de heterogeneidades e qualidade em reservatórios de hidrocarbonetos são fundamentais para exploração e otimização da produção de campos de óleo e gás. As heterogeneidades são determinadas por meio das distintas petrofácies, um conjunto de características petrográficas que especificam um grupo de rochas. O procedimento de identificar petrofácies geralmente é longo, o que faz com que a automatização seja necessária para agilizar o processo, e assim a análise seja concluída rapidamente. Através de sua determinação pode-se obter informações sobre as rochas reservatório, tais como: sua história deposicional e diagenética, estrutura do poro e mineralogia. Nesse contexto, técnicas de inteligência computacional aparecem como uma alternativa para discriminar litologia e petrofácies. Este trabalho objetiva o desenvolvimento de uma metodologia capaz de auxiliar na caracterização de reservatórios petrolíferos. A litologia e petrofácies foram derivadas do reconhecimento de padrões de características petrofísicas e petrográficas respectivamente. As características foram analisadas por meio de Análise de Componentes Principais. Métodos supervisionados foram empregados para classificar amostras e avaliar como novas amostras serão distribuídas. Para encontrar os classificadores ótimos, o método de evolução diferencial foi aplicado. Técnicas para aumentar a dimensionalidade foram utilizadas como uma forma de avaliar o comportamento dos métodos utilizados. Foi utilizado a Análise Filogenética como uma ferramenta para entender o processo de diagênese que ocorre durante o processo de litificação da rocha sedimentar e identificação dos eventos que ocorreram durante este processo. A metodologia apresentada surge como uma alternativa para auxiliar o geólogo/petrólogo na caracterização de um reservatório de petróleo.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-11-23T15:53:59Z
dc.date.available.fl_str_mv 2020-11-23
2020-11-23T15:53:59Z
dc.date.issued.fl_str_mv 2020-08-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/11898
url https://repositorio.ufjf.br/jspui/handle/ufjf/11898
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Modelagem Computacional
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICE – Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/11898/1/camilamartinssaporetti.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11898/2/license_rdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11898/3/license.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11898/4/camilamartinssaporetti.pdf.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11898/5/camilamartinssaporetti.pdf.jpg
bitstream.checksum.fl_str_mv b9260cff2f9e652c0f0b3fb5cd2967b0
e39d27027a6cc9cb039ad269a5db8e34
8a4605be74aa9ea9d79846c1fba20a33
4a48586b5bf960f2bf28df6f7f65c26d
efe45c9669924779e43acc5206fb2306
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813193882660241408