A self-adaptive IoT architecture to support computational resource allocation in an e-health environment
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/17005 |
Resumo: | Ambientes inteligentes são espaços complexos de interação entre pessoas, sensores, dispositivos e sistemas. A Internet das Coisas (IoT) proporcionou, nos últimos anos, a exposição gradual da sociedade a esses ambientes. Porém, a Engenharia de Software requer técnicas específicas para lidar com o desenvolvimento desses sistemas. Portanto, a Engenharia de Software deve abordar características intrínsecas de dispositivos e sensores; interações complexas em ambientes inteligentes; aspectos relacionados à qualidade, como escalabilidade e interoperabilidade; e a capacidade de consolidar boas práticas de desenvolvimento. A utilização de recursos computacionais pode ajudar a apoiar a construção de sistemas IoT contemporâneos, lidando com as complexidades e requisitos de qualidade apresentados. O objetivo principal deste trabalho é apresentar uma arquitetura de IoT auto-adaptativa para alocação de recursos computacionais, com a ajuda de inteligência artificial, em um ambiente inteligente de e-health. A arquitetura aborda como diferentes módulos cooperam e interagem para permitir o desenvolvimento de aplicações de IoT. A avaliação do trabalho ocorreu através de um estudo de caso real em ambiente inteligente de e-health. A metodologia de pesquisa utilizada foi Design Science. Os resultados mostraram a eficiência da arquitetura auto-adaptativa proposta utilizando inteligência artificial. Através dos resultados obtidos por meio da avaliação conduzida: (i) foi possível observar como a arquitetura se comporta em um ambiente inteligente de e-health; (ii) como ocorre a auto-adaptação dos recursos computacionais de acordo com as necessidades do ambiente; (iii) como a inteligência artificial pode apoiar a utilização de recursos computacionais em ambientes inteligentes de e-health; (iv) como podem ser realizados estudos de caso reais em ambientes de e-saúde para ajudar as empresas a tomar decisões sobre a gestão do seu espaço físico. Ademais, os resultados obtidos demonstram como uma arquitetura auto-adaptável utilizando inteligência artificial pode apoiar a gestão de um espaço físico inteligente de e-health. Com isso, foi possível observar como pode ocorrer a coleta de dados, o monitoramento do ambiente, a previsão do uso de recursos computacionais e a otimização do gerenciamento do ambiente. |
id |
UFJF_f5c24610c529e65307c91e4fb2f46547 |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/17005 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
David, José Maria Nazarhttp://lattes.cnpq.br/3640497501056163Dantas, Mario Antonio Ribeirohttp://lattes.cnpq.br/2900995280822495Braga, Regina Maria Macielhttp://lattes.cnpq.br/7690593698223418Dalpra, Gabriella Castro Barbosa Costahttp://lattes.cnpq.br/8544922263187197http://lattes.cnpq.br/4525685243016203Nascimento, Mateus Gonçalo do2024-08-01T14:11:42Z2024-07-292024-08-01T14:11:42Z2024-03-21https://repositorio.ufjf.br/jspui/handle/ufjf/17005Ambientes inteligentes são espaços complexos de interação entre pessoas, sensores, dispositivos e sistemas. A Internet das Coisas (IoT) proporcionou, nos últimos anos, a exposição gradual da sociedade a esses ambientes. Porém, a Engenharia de Software requer técnicas específicas para lidar com o desenvolvimento desses sistemas. Portanto, a Engenharia de Software deve abordar características intrínsecas de dispositivos e sensores; interações complexas em ambientes inteligentes; aspectos relacionados à qualidade, como escalabilidade e interoperabilidade; e a capacidade de consolidar boas práticas de desenvolvimento. A utilização de recursos computacionais pode ajudar a apoiar a construção de sistemas IoT contemporâneos, lidando com as complexidades e requisitos de qualidade apresentados. O objetivo principal deste trabalho é apresentar uma arquitetura de IoT auto-adaptativa para alocação de recursos computacionais, com a ajuda de inteligência artificial, em um ambiente inteligente de e-health. A arquitetura aborda como diferentes módulos cooperam e interagem para permitir o desenvolvimento de aplicações de IoT. A avaliação do trabalho ocorreu através de um estudo de caso real em ambiente inteligente de e-health. A metodologia de pesquisa utilizada foi Design Science. Os resultados mostraram a eficiência da arquitetura auto-adaptativa proposta utilizando inteligência artificial. Através dos resultados obtidos por meio da avaliação conduzida: (i) foi possível observar como a arquitetura se comporta em um ambiente inteligente de e-health; (ii) como ocorre a auto-adaptação dos recursos computacionais de acordo com as necessidades do ambiente; (iii) como a inteligência artificial pode apoiar a utilização de recursos computacionais em ambientes inteligentes de e-health; (iv) como podem ser realizados estudos de caso reais em ambientes de e-saúde para ajudar as empresas a tomar decisões sobre a gestão do seu espaço físico. Ademais, os resultados obtidos demonstram como uma arquitetura auto-adaptável utilizando inteligência artificial pode apoiar a gestão de um espaço físico inteligente de e-health. Com isso, foi possível observar como pode ocorrer a coleta de dados, o monitoramento do ambiente, a previsão do uso de recursos computacionais e a otimização do gerenciamento do ambiente.Intelligent environments are complex interaction spaces between people, sensors, devices, and systems. The Internet of Things (IoT) has gradually exposed society to these environments in recent years. However, Software Engineering requires specific techniques to deal with the development of these systems. Therefore, Software Engineering must address intrinsic characteristics of devices and sensors, complex interactions in intelligent environments, quality aspects, scalability and interoperability, and the ability to consolidate good development practices. Using computational resources can help support the construction of contemporary IoT systems, dealing with the complexities and quality requirements presented. The main objective of this work is to define a self-adaptive IoT architecture for allocating computational resources in an intelligent e-health environment with the help of artificial intelligence. The proposal concerns how architectural modules cooperate and interact to develop new applications. The work was developed through a real case study in an e-health environment. The research methodology used was Design Science. The results showed the efficiency of the proposed self-adaptive architecture using artificial intelligence. Through the results acquired: (i) it was possible to observe how the architecture behaves in an intelligent e-health environment; (ii) how computing resources self-adapt according to the needs of the environment; (iii) how artificial intelligence can support the use of computational resources in intelligent e-health environments; (iv) how real case studies can be carried out in e-health environments to help companies make decisions about the management of their physical space. Furthermore, the results demonstrate how a self-adaptive architecture using artificial intelligence can support the management of an intelligent physical e-health space. With this, it was possible to observe how data collection, environmental monitoring, prediction of the use of computational resources, and environmental management optimization can occur.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Ciência da ComputaçãoUFJFBrasilICE – Instituto de Ciências ExatasAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOArquitetura auto-adaptativaIoTAlocação de recursos computacionaisInteligência artificialAmbientes de e-healthSelf-adaptive architectureComputational resource allocationArtificial intelligenceE-health environmentsA self-adaptive IoT architecture to support computational resource allocation in an e-health environmentinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufjf.br/jspui/bitstream/ufjf/17005/1/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/17005/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ufjf/170052024-08-01 11:11:42.852oai:hermes.cpd.ufjf.br:ufjf/17005Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2024-08-01T14:11:42Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
A self-adaptive IoT architecture to support computational resource allocation in an e-health environment |
title |
A self-adaptive IoT architecture to support computational resource allocation in an e-health environment |
spellingShingle |
A self-adaptive IoT architecture to support computational resource allocation in an e-health environment Nascimento, Mateus Gonçalo do CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Arquitetura auto-adaptativa IoT Alocação de recursos computacionais Inteligência artificial Ambientes de e-health Self-adaptive architecture Computational resource allocation Artificial intelligence E-health environments |
title_short |
A self-adaptive IoT architecture to support computational resource allocation in an e-health environment |
title_full |
A self-adaptive IoT architecture to support computational resource allocation in an e-health environment |
title_fullStr |
A self-adaptive IoT architecture to support computational resource allocation in an e-health environment |
title_full_unstemmed |
A self-adaptive IoT architecture to support computational resource allocation in an e-health environment |
title_sort |
A self-adaptive IoT architecture to support computational resource allocation in an e-health environment |
author |
Nascimento, Mateus Gonçalo do |
author_facet |
Nascimento, Mateus Gonçalo do |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
David, José Maria Nazar |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3640497501056163 |
dc.contributor.advisor-co1.fl_str_mv |
Dantas, Mario Antonio Ribeiro |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/2900995280822495 |
dc.contributor.referee1.fl_str_mv |
Braga, Regina Maria Maciel |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/7690593698223418 |
dc.contributor.referee2.fl_str_mv |
Dalpra, Gabriella Castro Barbosa Costa |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/8544922263187197 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4525685243016203 |
dc.contributor.author.fl_str_mv |
Nascimento, Mateus Gonçalo do |
contributor_str_mv |
David, José Maria Nazar Dantas, Mario Antonio Ribeiro Braga, Regina Maria Maciel Dalpra, Gabriella Castro Barbosa Costa |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Arquitetura auto-adaptativa IoT Alocação de recursos computacionais Inteligência artificial Ambientes de e-health Self-adaptive architecture Computational resource allocation Artificial intelligence E-health environments |
dc.subject.por.fl_str_mv |
Arquitetura auto-adaptativa IoT Alocação de recursos computacionais Inteligência artificial Ambientes de e-health Self-adaptive architecture Computational resource allocation Artificial intelligence E-health environments |
description |
Ambientes inteligentes são espaços complexos de interação entre pessoas, sensores, dispositivos e sistemas. A Internet das Coisas (IoT) proporcionou, nos últimos anos, a exposição gradual da sociedade a esses ambientes. Porém, a Engenharia de Software requer técnicas específicas para lidar com o desenvolvimento desses sistemas. Portanto, a Engenharia de Software deve abordar características intrínsecas de dispositivos e sensores; interações complexas em ambientes inteligentes; aspectos relacionados à qualidade, como escalabilidade e interoperabilidade; e a capacidade de consolidar boas práticas de desenvolvimento. A utilização de recursos computacionais pode ajudar a apoiar a construção de sistemas IoT contemporâneos, lidando com as complexidades e requisitos de qualidade apresentados. O objetivo principal deste trabalho é apresentar uma arquitetura de IoT auto-adaptativa para alocação de recursos computacionais, com a ajuda de inteligência artificial, em um ambiente inteligente de e-health. A arquitetura aborda como diferentes módulos cooperam e interagem para permitir o desenvolvimento de aplicações de IoT. A avaliação do trabalho ocorreu através de um estudo de caso real em ambiente inteligente de e-health. A metodologia de pesquisa utilizada foi Design Science. Os resultados mostraram a eficiência da arquitetura auto-adaptativa proposta utilizando inteligência artificial. Através dos resultados obtidos por meio da avaliação conduzida: (i) foi possível observar como a arquitetura se comporta em um ambiente inteligente de e-health; (ii) como ocorre a auto-adaptação dos recursos computacionais de acordo com as necessidades do ambiente; (iii) como a inteligência artificial pode apoiar a utilização de recursos computacionais em ambientes inteligentes de e-health; (iv) como podem ser realizados estudos de caso reais em ambientes de e-saúde para ajudar as empresas a tomar decisões sobre a gestão do seu espaço físico. Ademais, os resultados obtidos demonstram como uma arquitetura auto-adaptável utilizando inteligência artificial pode apoiar a gestão de um espaço físico inteligente de e-health. Com isso, foi possível observar como pode ocorrer a coleta de dados, o monitoramento do ambiente, a previsão do uso de recursos computacionais e a otimização do gerenciamento do ambiente. |
publishDate |
2024 |
dc.date.accessioned.fl_str_mv |
2024-08-01T14:11:42Z |
dc.date.available.fl_str_mv |
2024-07-29 2024-08-01T14:11:42Z |
dc.date.issued.fl_str_mv |
2024-03-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/17005 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/17005 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/17005/1/license_rdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/17005/2/license.txt |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1823238602755145728 |