Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Ciência e Agrotecnologia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542019000100205 |
Resumo: | ABSTRACT Portable X-ray fluorescence (pXRF) analysis can be considered one of the main recent advances for chemical characterization of earth materials. The water content of the samples can affect the pXRF performance. As a novelty, we aimed to establish relationships (linear regression) between the effect of water content on pXRF results and atomic number (Z) of the elements. Three certified reference materials (CRM) were investigated: OREAS 100a, OREAS 101a, and OREAS 101b. These materials were saturated (0.68 g g-1) with distilled water and left to air-dry naturally. During the drying, the elemental concentrations (C) were determined at different water contents using a pXRF spectrometer. For each water content, the ratio Cwet/Cdry was determined and plotted against the water content. The attenuation coefficient (σ) was also determined. High σ values mean more influence of water content upon measurement element concentration. The obtained recovery rates allowed a qualitative determination. The concentration for the most elements reduced linearly with increasing water content. A predictable behavior of the water content on pXRF results as function of atomic number was not found. Elements identified by Lα spectral line with highest Z were more impacted by water content than elements identified by Kα line with lowest Z. Ti, Cr and Fe was not significantly influenced by water content, and Sr was the most impacted. Our findings contribute to decision-making before characterization earth materials via pXRF, obliging the use of dry samples for determination of impacted elements or by using moisture-corrected data. |
id |
UFLA-2_e583e1efabb5df8dc05fe9f71c0147ea |
---|---|
oai_identifier_str |
oai:scielo:S1413-70542019000100205 |
network_acronym_str |
UFLA-2 |
network_name_str |
Ciência e Agrotecnologia (Online) |
repository_id_str |
|
spelling |
Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water contentProximal sensorsX-ray scatteringspectroscopy analysis.ABSTRACT Portable X-ray fluorescence (pXRF) analysis can be considered one of the main recent advances for chemical characterization of earth materials. The water content of the samples can affect the pXRF performance. As a novelty, we aimed to establish relationships (linear regression) between the effect of water content on pXRF results and atomic number (Z) of the elements. Three certified reference materials (CRM) were investigated: OREAS 100a, OREAS 101a, and OREAS 101b. These materials were saturated (0.68 g g-1) with distilled water and left to air-dry naturally. During the drying, the elemental concentrations (C) were determined at different water contents using a pXRF spectrometer. For each water content, the ratio Cwet/Cdry was determined and plotted against the water content. The attenuation coefficient (σ) was also determined. High σ values mean more influence of water content upon measurement element concentration. The obtained recovery rates allowed a qualitative determination. The concentration for the most elements reduced linearly with increasing water content. A predictable behavior of the water content on pXRF results as function of atomic number was not found. Elements identified by Lα spectral line with highest Z were more impacted by water content than elements identified by Kα line with lowest Z. Ti, Cr and Fe was not significantly influenced by water content, and Sr was the most impacted. Our findings contribute to decision-making before characterization earth materials via pXRF, obliging the use of dry samples for determination of impacted elements or by using moisture-corrected data.Editora da UFLA2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542019000100205Ciência e Agrotecnologia v.43 2019reponame:Ciência e Agrotecnologia (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLA10.1590/1413-7054201943029218info:eu-repo/semantics/openAccessSantana,Monna Lysa TeixeiraCarvalho,Geila SantosGuilherme,Luiz Roberto GuimarãesCuri,NiltonRibeiro,Bruno Teixeiraeng2019-05-23T00:00:00Zoai:scielo:S1413-70542019000100205Revistahttp://www.scielo.br/cagroPUBhttps://old.scielo.br/oai/scielo-oai.php||renpaiva@dbi.ufla.br|| editora@editora.ufla.br1981-18291413-7054opendoar:2022-11-22T16:31:37.416583Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content |
title |
Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content |
spellingShingle |
Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content Santana,Monna Lysa Teixeira Proximal sensors X-ray scattering spectroscopy analysis. |
title_short |
Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content |
title_full |
Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content |
title_fullStr |
Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content |
title_full_unstemmed |
Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content |
title_sort |
Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content |
author |
Santana,Monna Lysa Teixeira |
author_facet |
Santana,Monna Lysa Teixeira Carvalho,Geila Santos Guilherme,Luiz Roberto Guimarães Curi,Nilton Ribeiro,Bruno Teixeira |
author_role |
author |
author2 |
Carvalho,Geila Santos Guilherme,Luiz Roberto Guimarães Curi,Nilton Ribeiro,Bruno Teixeira |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Santana,Monna Lysa Teixeira Carvalho,Geila Santos Guilherme,Luiz Roberto Guimarães Curi,Nilton Ribeiro,Bruno Teixeira |
dc.subject.por.fl_str_mv |
Proximal sensors X-ray scattering spectroscopy analysis. |
topic |
Proximal sensors X-ray scattering spectroscopy analysis. |
description |
ABSTRACT Portable X-ray fluorescence (pXRF) analysis can be considered one of the main recent advances for chemical characterization of earth materials. The water content of the samples can affect the pXRF performance. As a novelty, we aimed to establish relationships (linear regression) between the effect of water content on pXRF results and atomic number (Z) of the elements. Three certified reference materials (CRM) were investigated: OREAS 100a, OREAS 101a, and OREAS 101b. These materials were saturated (0.68 g g-1) with distilled water and left to air-dry naturally. During the drying, the elemental concentrations (C) were determined at different water contents using a pXRF spectrometer. For each water content, the ratio Cwet/Cdry was determined and plotted against the water content. The attenuation coefficient (σ) was also determined. High σ values mean more influence of water content upon measurement element concentration. The obtained recovery rates allowed a qualitative determination. The concentration for the most elements reduced linearly with increasing water content. A predictable behavior of the water content on pXRF results as function of atomic number was not found. Elements identified by Lα spectral line with highest Z were more impacted by water content than elements identified by Kα line with lowest Z. Ti, Cr and Fe was not significantly influenced by water content, and Sr was the most impacted. Our findings contribute to decision-making before characterization earth materials via pXRF, obliging the use of dry samples for determination of impacted elements or by using moisture-corrected data. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542019000100205 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542019000100205 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1413-7054201943029218 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Editora da UFLA |
publisher.none.fl_str_mv |
Editora da UFLA |
dc.source.none.fl_str_mv |
Ciência e Agrotecnologia v.43 2019 reponame:Ciência e Agrotecnologia (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Ciência e Agrotecnologia (Online) |
collection |
Ciência e Agrotecnologia (Online) |
repository.name.fl_str_mv |
Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
||renpaiva@dbi.ufla.br|| editora@editora.ufla.br |
_version_ |
1799874970809008128 |