TUNING OF THE METAHEURISTIC VARIABLE NEIGHBORHOOD SEARCH FOR A FOREST PLANNING PROBLEM
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cerne (Online) |
Texto Completo: | https://cerne.ufla.br/site/index.php/CERNE/article/view/1869 |
Resumo: | In forest science it is important evaluate new technologies from computational science. This work aimed to test a different kind of metaheuristic called Variable Neighborhood Search in a forest planning problem. The management total area has 4.210 ha distributed in 120 stands in ages between 1 and 6 years old and site index since 22 m to 31 m. The problem was modelled considering the maximization of the net present value subject to the restrictions: annual cut volume between 140.000 m³ and 160.000 m³, harvester ages equal to 5, 6 or 7 years, and the impossibility of division of the management unity at harvester time. It was evaluated different settings for the Variable Neighborhood Search, varying the quantity of neighbours, the neighbourhood structure and number or generations. 30 repetitions were performed for each setting. The results were compared to the one obtained from integer linear programming and linear programming. The integer linear programming considered the best solution obtained after 1 hour of processing. The best setting to the Variable Neighborhood Search was 100 neighbours, a neighbourhood structure with changes in 1%, 2%, 3% and 4% of prescriptions and 500 iterations. The results shown by the Variable Neighborhood Search was 2,77% worse than one obtained by the integer linear programming with 1 hours of processing, and 2,84% worse than the linear programming. It is possible to conclude that the presented metaheuristic can be used in resolution of forest scheduling problem. |
id |
UFLA-3_399f10f96164532dde0f1934de1fa87c |
---|---|
oai_identifier_str |
oai:cerne.ufla.br:article/1869 |
network_acronym_str |
UFLA-3 |
network_name_str |
Cerne (Online) |
repository_id_str |
|
spelling |
TUNING OF THE METAHEURISTIC VARIABLE NEIGHBORHOOD SEARCH FOR A FOREST PLANNING PROBLEMMETAHEURÍSTICA VARIABLE NEIGHBORHOOD SEARCH APLICADA PARA UM PROBLEMA DE PLANEJAMENTO FLORESTALOperational ResearchArtificial IntelligenceForest ManagementPesquisa OperacionalInteligência ArtificialManejo FlorestalIn forest science it is important evaluate new technologies from computational science. This work aimed to test a different kind of metaheuristic called Variable Neighborhood Search in a forest planning problem. The management total area has 4.210 ha distributed in 120 stands in ages between 1 and 6 years old and site index since 22 m to 31 m. The problem was modelled considering the maximization of the net present value subject to the restrictions: annual cut volume between 140.000 m³ and 160.000 m³, harvester ages equal to 5, 6 or 7 years, and the impossibility of division of the management unity at harvester time. It was evaluated different settings for the Variable Neighborhood Search, varying the quantity of neighbours, the neighbourhood structure and number or generations. 30 repetitions were performed for each setting. The results were compared to the one obtained from integer linear programming and linear programming. The integer linear programming considered the best solution obtained after 1 hour of processing. The best setting to the Variable Neighborhood Search was 100 neighbours, a neighbourhood structure with changes in 1%, 2%, 3% and 4% of prescriptions and 500 iterations. The results shown by the Variable Neighborhood Search was 2,77% worse than one obtained by the integer linear programming with 1 hours of processing, and 2,84% worse than the linear programming. It is possible to conclude that the presented metaheuristic can be used in resolution of forest scheduling problem.Dada a importância de se avaliar novas tecnologias para otimização do planejamento florestal, objetivou-se introduzir a metaheurística Variable Neighborhood Search na resolução de um problema de ordenamento da produção florestal. Considerou-se uma área manejada de 4.210 ha, contendo 120 talhões com idades entre 1 e 6 anos e índice de sítio variando entre 22 m e 31 m, em uma idade-índice de 72 meses. O problema foi modelado com o objetivo de se maximizar o valor presente líquido global do empreendimento e considerou como restrições uma demanda anual entre 140.000 m³ e 160.000 m³, colheita nas idades de 5, 6 e 7 anos e a imposição do não fracionamento dos talhões no momento do corte. Foram avaliadas diferentes configurações da metaheurística, variando-se a quantidade de vizinhos, a estrutura de vizinhança e a quantidade de gerações. Para cada parametrização foram avaliadas 30 repetições. Os resultados foram comparados com aqueles obtidos utilizando-se programação linear e programação linear inteira. Para a programação inteira considerou-se a melhor solução após 1 hora de processamento. A melhor configuração considerou 100 vizinhos, uma estrutura de vizinhança com alterações em 1%, 2%, 3% e 4% das prescrições e 500 gerações. Os resultados apresentados pela metaheurística Variable Neighborhood Search foram 2,77% inferiores à solução da programação inteira obtida após 1 hora de processamento e 2,84% inferior à programação linear. Conclui-se que a metaheurística apresentada pode ser utilizada para resolução de problemas de ordenamento florestal, podendo gerar bons resultados em comparação à programação inteira no caso de instâncias NP-difíceis.CERNECERNE2018-10-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/1869CERNE; Vol. 24 No. 3 (2018); 259-268CERNE; v. 24 n. 3 (2018); 259-2682317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://cerne.ufla.br/site/index.php/CERNE/article/view/1869/1087Copyright (c) 2018 CERNEinfo:eu-repo/semantics/openAccessAraújo Júnior, Carlos AlbertoMendes, João BatistaAssis, Adriana Leandra deCabacinha, Christian DiasStocks, Jonathan JamesSilva, Liniker Fernandes daLeite, Helio Garcia2019-06-05T14:06:30Zoai:cerne.ufla.br:article/1869Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:54:37.538002Cerne (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
TUNING OF THE METAHEURISTIC VARIABLE NEIGHBORHOOD SEARCH FOR A FOREST PLANNING PROBLEM METAHEURÍSTICA VARIABLE NEIGHBORHOOD SEARCH APLICADA PARA UM PROBLEMA DE PLANEJAMENTO FLORESTAL |
title |
TUNING OF THE METAHEURISTIC VARIABLE NEIGHBORHOOD SEARCH FOR A FOREST PLANNING PROBLEM |
spellingShingle |
TUNING OF THE METAHEURISTIC VARIABLE NEIGHBORHOOD SEARCH FOR A FOREST PLANNING PROBLEM Araújo Júnior, Carlos Alberto Operational Research Artificial Intelligence Forest Management Pesquisa Operacional Inteligência Artificial Manejo Florestal |
title_short |
TUNING OF THE METAHEURISTIC VARIABLE NEIGHBORHOOD SEARCH FOR A FOREST PLANNING PROBLEM |
title_full |
TUNING OF THE METAHEURISTIC VARIABLE NEIGHBORHOOD SEARCH FOR A FOREST PLANNING PROBLEM |
title_fullStr |
TUNING OF THE METAHEURISTIC VARIABLE NEIGHBORHOOD SEARCH FOR A FOREST PLANNING PROBLEM |
title_full_unstemmed |
TUNING OF THE METAHEURISTIC VARIABLE NEIGHBORHOOD SEARCH FOR A FOREST PLANNING PROBLEM |
title_sort |
TUNING OF THE METAHEURISTIC VARIABLE NEIGHBORHOOD SEARCH FOR A FOREST PLANNING PROBLEM |
author |
Araújo Júnior, Carlos Alberto |
author_facet |
Araújo Júnior, Carlos Alberto Mendes, João Batista Assis, Adriana Leandra de Cabacinha, Christian Dias Stocks, Jonathan James Silva, Liniker Fernandes da Leite, Helio Garcia |
author_role |
author |
author2 |
Mendes, João Batista Assis, Adriana Leandra de Cabacinha, Christian Dias Stocks, Jonathan James Silva, Liniker Fernandes da Leite, Helio Garcia |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Araújo Júnior, Carlos Alberto Mendes, João Batista Assis, Adriana Leandra de Cabacinha, Christian Dias Stocks, Jonathan James Silva, Liniker Fernandes da Leite, Helio Garcia |
dc.subject.por.fl_str_mv |
Operational Research Artificial Intelligence Forest Management Pesquisa Operacional Inteligência Artificial Manejo Florestal |
topic |
Operational Research Artificial Intelligence Forest Management Pesquisa Operacional Inteligência Artificial Manejo Florestal |
description |
In forest science it is important evaluate new technologies from computational science. This work aimed to test a different kind of metaheuristic called Variable Neighborhood Search in a forest planning problem. The management total area has 4.210 ha distributed in 120 stands in ages between 1 and 6 years old and site index since 22 m to 31 m. The problem was modelled considering the maximization of the net present value subject to the restrictions: annual cut volume between 140.000 m³ and 160.000 m³, harvester ages equal to 5, 6 or 7 years, and the impossibility of division of the management unity at harvester time. It was evaluated different settings for the Variable Neighborhood Search, varying the quantity of neighbours, the neighbourhood structure and number or generations. 30 repetitions were performed for each setting. The results were compared to the one obtained from integer linear programming and linear programming. The integer linear programming considered the best solution obtained after 1 hour of processing. The best setting to the Variable Neighborhood Search was 100 neighbours, a neighbourhood structure with changes in 1%, 2%, 3% and 4% of prescriptions and 500 iterations. The results shown by the Variable Neighborhood Search was 2,77% worse than one obtained by the integer linear programming with 1 hours of processing, and 2,84% worse than the linear programming. It is possible to conclude that the presented metaheuristic can be used in resolution of forest scheduling problem. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10-16 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://cerne.ufla.br/site/index.php/CERNE/article/view/1869 |
url |
https://cerne.ufla.br/site/index.php/CERNE/article/view/1869 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://cerne.ufla.br/site/index.php/CERNE/article/view/1869/1087 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2018 CERNE info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2018 CERNE |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
CERNE CERNE |
publisher.none.fl_str_mv |
CERNE CERNE |
dc.source.none.fl_str_mv |
CERNE; Vol. 24 No. 3 (2018); 259-268 CERNE; v. 24 n. 3 (2018); 259-268 2317-6342 0104-7760 reponame:Cerne (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Cerne (Online) |
collection |
Cerne (Online) |
repository.name.fl_str_mv |
Cerne (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
cerne@dcf.ufla.br||cerne@dcf.ufla.br |
_version_ |
1799874943685492736 |