THE DEVELOPMENT OF A LINEAR MIXED-EFFECT MODEL TO ESTIMATE GROWTH AND YIELD OF CLONAL Eucalyptus STANDS

Detalhes bibliográficos
Autor(a) principal: Calegario, Natalino
Data de Publicação: 2015
Outros Autores: Daniels, Richard F., Maestri, Romualdo, Neiva, Rodolfo
Tipo de documento: Artigo
Idioma: por
Título da fonte: Cerne (Online)
Texto Completo: https://cerne.ufla.br/site/index.php/CERNE/article/view/465
Resumo: The main purpose of this study was to develop a linear mixed-effects model to estimate the basal area growth and yield, for clonal Eucalytus stands. After modeling the variance among sample plots and clones, it was verified a significant improvement of the statistic information parameters (AIC and BIC) and the likelihood logarithm value. Also, after modeling both heteroscedasticity and autocorrelation, such statistic criteria had a significant improvement. Thus, the modeling process improved significantly the estimated parameters in the linear model.   
id UFLA-3_50cfc6740aea1aa4d43d6686261cb5bf
oai_identifier_str oai:cerne.ufla.br:article/465
network_acronym_str UFLA-3
network_name_str Cerne (Online)
repository_id_str
spelling THE DEVELOPMENT OF A LINEAR MIXED-EFFECT MODEL TO ESTIMATE GROWTH AND YIELD OF CLONAL Eucalyptus STANDSEucalyptus growthlinear mixed-effect modelbasal areaheteroscedasticityautocorrelationThe main purpose of this study was to develop a linear mixed-effects model to estimate the basal area growth and yield, for clonal Eucalytus stands. After modeling the variance among sample plots and clones, it was verified a significant improvement of the statistic information parameters (AIC and BIC) and the likelihood logarithm value. Also, after modeling both heteroscedasticity and autocorrelation, such statistic criteria had a significant improvement. Thus, the modeling process improved significantly the estimated parameters in the linear model.   CERNECERNE2015-10-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/465CERNE; Vol. 10 No. 1 (2004); 067-086CERNE; v. 10 n. 1 (2004); 067-0862317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://cerne.ufla.br/site/index.php/CERNE/article/view/465/403Copyright (c) 2015 CERNEinfo:eu-repo/semantics/openAccessCalegario, NatalinoDaniels, Richard F.Maestri, RomualdoNeiva, Rodolfo2015-10-21T23:21:28Zoai:cerne.ufla.br:article/465Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:53:53.115310Cerne (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv THE DEVELOPMENT OF A LINEAR MIXED-EFFECT MODEL TO ESTIMATE GROWTH AND YIELD OF CLONAL Eucalyptus STANDS
title THE DEVELOPMENT OF A LINEAR MIXED-EFFECT MODEL TO ESTIMATE GROWTH AND YIELD OF CLONAL Eucalyptus STANDS
spellingShingle THE DEVELOPMENT OF A LINEAR MIXED-EFFECT MODEL TO ESTIMATE GROWTH AND YIELD OF CLONAL Eucalyptus STANDS
Calegario, Natalino
Eucalyptus growth
linear mixed-effect model
basal area
heteroscedasticity
autocorrelation
title_short THE DEVELOPMENT OF A LINEAR MIXED-EFFECT MODEL TO ESTIMATE GROWTH AND YIELD OF CLONAL Eucalyptus STANDS
title_full THE DEVELOPMENT OF A LINEAR MIXED-EFFECT MODEL TO ESTIMATE GROWTH AND YIELD OF CLONAL Eucalyptus STANDS
title_fullStr THE DEVELOPMENT OF A LINEAR MIXED-EFFECT MODEL TO ESTIMATE GROWTH AND YIELD OF CLONAL Eucalyptus STANDS
title_full_unstemmed THE DEVELOPMENT OF A LINEAR MIXED-EFFECT MODEL TO ESTIMATE GROWTH AND YIELD OF CLONAL Eucalyptus STANDS
title_sort THE DEVELOPMENT OF A LINEAR MIXED-EFFECT MODEL TO ESTIMATE GROWTH AND YIELD OF CLONAL Eucalyptus STANDS
author Calegario, Natalino
author_facet Calegario, Natalino
Daniels, Richard F.
Maestri, Romualdo
Neiva, Rodolfo
author_role author
author2 Daniels, Richard F.
Maestri, Romualdo
Neiva, Rodolfo
author2_role author
author
author
dc.contributor.author.fl_str_mv Calegario, Natalino
Daniels, Richard F.
Maestri, Romualdo
Neiva, Rodolfo
dc.subject.por.fl_str_mv Eucalyptus growth
linear mixed-effect model
basal area
heteroscedasticity
autocorrelation
topic Eucalyptus growth
linear mixed-effect model
basal area
heteroscedasticity
autocorrelation
description The main purpose of this study was to develop a linear mixed-effects model to estimate the basal area growth and yield, for clonal Eucalytus stands. After modeling the variance among sample plots and clones, it was verified a significant improvement of the statistic information parameters (AIC and BIC) and the likelihood logarithm value. Also, after modeling both heteroscedasticity and autocorrelation, such statistic criteria had a significant improvement. Thus, the modeling process improved significantly the estimated parameters in the linear model.   
publishDate 2015
dc.date.none.fl_str_mv 2015-10-05
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/465
url https://cerne.ufla.br/site/index.php/CERNE/article/view/465
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/465/403
dc.rights.driver.fl_str_mv Copyright (c) 2015 CERNE
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2015 CERNE
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CERNE
CERNE
publisher.none.fl_str_mv CERNE
CERNE
dc.source.none.fl_str_mv CERNE; Vol. 10 No. 1 (2004); 067-086
CERNE; v. 10 n. 1 (2004); 067-086
2317-6342
0104-7760
reponame:Cerne (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Cerne (Online)
collection Cerne (Online)
repository.name.fl_str_mv Cerne (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv cerne@dcf.ufla.br||cerne@dcf.ufla.br
_version_ 1799874940612116480