CAN GENETIC VARIATIONS IN THE DEPLETION PROCESS OF STARCH STOCKS BE DRIVING CONTEMPORARY MICROEVOLUTION IN Toona ciliata Var. australis?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cerne (Online) |
Texto Completo: | https://cerne.ufla.br/site/index.php/CERNE/article/view/1417 |
Resumo: | A simple method to establish a relationship between physiological responses of plants and thermal stresses is by quantifying the number of parenchyma cells with remaining starch stocks. The knowledge of the dynamic of starch depletion can be achieved by using statistical models such as thermal performance curves (TPC). The aim of this study was to quantify radial parenchyma cells with remaining starch stocks in order to evaluate changes in TPC regarding increases in temperature over seedlings of Toona ciliata (Australian Red cedar), in different heat induced treatments of matching both exposure time and temperature; besides of the assessment of variations in the TPC’s and also to understand whether these changes are over genetic control. We used a protocol of heat induced treatment in the stems of the seedlings, anatomical cuts and staining with neutral red for the commercial clone BV1120, which was used as template to fit polynomial curves of TPC. After these mathematical fits and validation of these models with lignotubers of Eucalyptus urophylla, we defined a depletion time of 50% (TD50) from the starch stocks for each thermal treatment, so we could compare the performance for the others five commercial clones: BV1110, BV1121, BV1151, BV1210 and BV1321. The R2 values were all above 85%. Results indicated that clone BV1110 had the highest value for remaining starch stocks at all heat induced treatments, in contrast to the clone BV1210, which had the lowest values for remaining starch stocks. The variation of the starch content indicates high values of broad-sense heritability, ranging from 97,43 to 98,48%, suggesting a possible contemporary microevolution process undergoing in Australian Red cedar. Thus, further selections can help improving the tolerance of Australian Red cedar to increasing temperatures on the environment. |
id |
UFLA-3_a29e7c767e141fb49a70963483546f88 |
---|---|
oai_identifier_str |
oai:cerne.ufla.br:article/1417 |
network_acronym_str |
UFLA-3 |
network_name_str |
Cerne (Online) |
repository_id_str |
|
spelling |
CAN GENETIC VARIATIONS IN THE DEPLETION PROCESS OF STARCH STOCKS BE DRIVING CONTEMPORARY MICROEVOLUTION IN Toona ciliata Var. australis?Thermal performance curvesNeutral red dyeThermal stressEmbolismCavitationA simple method to establish a relationship between physiological responses of plants and thermal stresses is by quantifying the number of parenchyma cells with remaining starch stocks. The knowledge of the dynamic of starch depletion can be achieved by using statistical models such as thermal performance curves (TPC). The aim of this study was to quantify radial parenchyma cells with remaining starch stocks in order to evaluate changes in TPC regarding increases in temperature over seedlings of Toona ciliata (Australian Red cedar), in different heat induced treatments of matching both exposure time and temperature; besides of the assessment of variations in the TPC’s and also to understand whether these changes are over genetic control. We used a protocol of heat induced treatment in the stems of the seedlings, anatomical cuts and staining with neutral red for the commercial clone BV1120, which was used as template to fit polynomial curves of TPC. After these mathematical fits and validation of these models with lignotubers of Eucalyptus urophylla, we defined a depletion time of 50% (TD50) from the starch stocks for each thermal treatment, so we could compare the performance for the others five commercial clones: BV1110, BV1121, BV1151, BV1210 and BV1321. The R2 values were all above 85%. Results indicated that clone BV1110 had the highest value for remaining starch stocks at all heat induced treatments, in contrast to the clone BV1210, which had the lowest values for remaining starch stocks. The variation of the starch content indicates high values of broad-sense heritability, ranging from 97,43 to 98,48%, suggesting a possible contemporary microevolution process undergoing in Australian Red cedar. Thus, further selections can help improving the tolerance of Australian Red cedar to increasing temperatures on the environment.CERNECERNE2016-12-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/1417CERNE; Vol. 22 No. 4 (2016); 515-526CERNE; v. 22 n. 4 (2016); 515-5262317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://cerne.ufla.br/site/index.php/CERNE/article/view/1417/962Copyright (c) 2016 CERNEinfo:eu-repo/semantics/openAccessAbreu Junior, Aureo AparecidoRosado, Sebastião Carlos da Silva2017-03-08T09:13:00Zoai:cerne.ufla.br:article/1417Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:54:30.521281Cerne (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
CAN GENETIC VARIATIONS IN THE DEPLETION PROCESS OF STARCH STOCKS BE DRIVING CONTEMPORARY MICROEVOLUTION IN Toona ciliata Var. australis? |
title |
CAN GENETIC VARIATIONS IN THE DEPLETION PROCESS OF STARCH STOCKS BE DRIVING CONTEMPORARY MICROEVOLUTION IN Toona ciliata Var. australis? |
spellingShingle |
CAN GENETIC VARIATIONS IN THE DEPLETION PROCESS OF STARCH STOCKS BE DRIVING CONTEMPORARY MICROEVOLUTION IN Toona ciliata Var. australis? Abreu Junior, Aureo Aparecido Thermal performance curves Neutral red dye Thermal stress Embolism Cavitation |
title_short |
CAN GENETIC VARIATIONS IN THE DEPLETION PROCESS OF STARCH STOCKS BE DRIVING CONTEMPORARY MICROEVOLUTION IN Toona ciliata Var. australis? |
title_full |
CAN GENETIC VARIATIONS IN THE DEPLETION PROCESS OF STARCH STOCKS BE DRIVING CONTEMPORARY MICROEVOLUTION IN Toona ciliata Var. australis? |
title_fullStr |
CAN GENETIC VARIATIONS IN THE DEPLETION PROCESS OF STARCH STOCKS BE DRIVING CONTEMPORARY MICROEVOLUTION IN Toona ciliata Var. australis? |
title_full_unstemmed |
CAN GENETIC VARIATIONS IN THE DEPLETION PROCESS OF STARCH STOCKS BE DRIVING CONTEMPORARY MICROEVOLUTION IN Toona ciliata Var. australis? |
title_sort |
CAN GENETIC VARIATIONS IN THE DEPLETION PROCESS OF STARCH STOCKS BE DRIVING CONTEMPORARY MICROEVOLUTION IN Toona ciliata Var. australis? |
author |
Abreu Junior, Aureo Aparecido |
author_facet |
Abreu Junior, Aureo Aparecido Rosado, Sebastião Carlos da Silva |
author_role |
author |
author2 |
Rosado, Sebastião Carlos da Silva |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Abreu Junior, Aureo Aparecido Rosado, Sebastião Carlos da Silva |
dc.subject.por.fl_str_mv |
Thermal performance curves Neutral red dye Thermal stress Embolism Cavitation |
topic |
Thermal performance curves Neutral red dye Thermal stress Embolism Cavitation |
description |
A simple method to establish a relationship between physiological responses of plants and thermal stresses is by quantifying the number of parenchyma cells with remaining starch stocks. The knowledge of the dynamic of starch depletion can be achieved by using statistical models such as thermal performance curves (TPC). The aim of this study was to quantify radial parenchyma cells with remaining starch stocks in order to evaluate changes in TPC regarding increases in temperature over seedlings of Toona ciliata (Australian Red cedar), in different heat induced treatments of matching both exposure time and temperature; besides of the assessment of variations in the TPC’s and also to understand whether these changes are over genetic control. We used a protocol of heat induced treatment in the stems of the seedlings, anatomical cuts and staining with neutral red for the commercial clone BV1120, which was used as template to fit polynomial curves of TPC. After these mathematical fits and validation of these models with lignotubers of Eucalyptus urophylla, we defined a depletion time of 50% (TD50) from the starch stocks for each thermal treatment, so we could compare the performance for the others five commercial clones: BV1110, BV1121, BV1151, BV1210 and BV1321. The R2 values were all above 85%. Results indicated that clone BV1110 had the highest value for remaining starch stocks at all heat induced treatments, in contrast to the clone BV1210, which had the lowest values for remaining starch stocks. The variation of the starch content indicates high values of broad-sense heritability, ranging from 97,43 to 98,48%, suggesting a possible contemporary microevolution process undergoing in Australian Red cedar. Thus, further selections can help improving the tolerance of Australian Red cedar to increasing temperatures on the environment. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-23 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://cerne.ufla.br/site/index.php/CERNE/article/view/1417 |
url |
https://cerne.ufla.br/site/index.php/CERNE/article/view/1417 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://cerne.ufla.br/site/index.php/CERNE/article/view/1417/962 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 CERNE info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 CERNE |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
CERNE CERNE |
publisher.none.fl_str_mv |
CERNE CERNE |
dc.source.none.fl_str_mv |
CERNE; Vol. 22 No. 4 (2016); 515-526 CERNE; v. 22 n. 4 (2016); 515-526 2317-6342 0104-7760 reponame:Cerne (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Cerne (Online) |
collection |
Cerne (Online) |
repository.name.fl_str_mv |
Cerne (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
cerne@dcf.ufla.br||cerne@dcf.ufla.br |
_version_ |
1799874943253479424 |