GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp

Detalhes bibliográficos
Autor(a) principal: Carvalho, Samuel de Pádua Chaves e
Data de Publicação: 2015
Outros Autores: Calegario, Natalino, Silva, Fabyano Fonseca e, Borges, Luís Antônio Coimbra, Mendonça, Adriano Ribeiro de, Lima, Mariana Peres de
Tipo de documento: Artigo
Idioma: por
Título da fonte: Cerne (Online)
Texto Completo: https://cerne.ufla.br/site/index.php/CERNE/article/view/84
Resumo: This paper aims to propose the use of generalized nonlinear models for prediction of basal area growth and yield of total volume of the hybrid Eucalyptus urocamaldulensis, in a stand situation in a central region in state of Minas Gerais. The used methodology allows to work with data in its original form without the necessity of transformation of variables, and generate highly accurate models. To evaluate the fitting quality, it was proposed the Bayesian information criterion, of the Akaike, and test the maximum likelihood, beyond the standard error of estimate, and residual graphics. The models were used with a good performance, highly accurate and parsimonious estimates of the variables proposed, with errors reduced to 12% for basal area and 4% for prediction of the volume.
id UFLA-3_ae0cf5e8205541b6bf5cb07b31025486
oai_identifier_str oai:cerne.ufla.br:article/84
network_acronym_str UFLA-3
network_name_str Cerne (Online)
repository_id_str
spelling GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus spProbability modelspredictionforestry growth and yieldThis paper aims to propose the use of generalized nonlinear models for prediction of basal area growth and yield of total volume of the hybrid Eucalyptus urocamaldulensis, in a stand situation in a central region in state of Minas Gerais. The used methodology allows to work with data in its original form without the necessity of transformation of variables, and generate highly accurate models. To evaluate the fitting quality, it was proposed the Bayesian information criterion, of the Akaike, and test the maximum likelihood, beyond the standard error of estimate, and residual graphics. The models were used with a good performance, highly accurate and parsimonious estimates of the variables proposed, with errors reduced to 12% for basal area and 4% for prediction of the volume.CERNECERNE2015-05-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/84CERNE; Vol. 17 No. 4 (2011); 541-548CERNE; v. 17 n. 4 (2011); 541-5482317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://cerne.ufla.br/site/index.php/CERNE/article/view/84/68Copyright (c) 2015 Samuel de Pádua Chaves e Carvalho, Natalino Calegario, Fabyano Fonseca e Silva, Luís Antônio Coimbra Borges, Adriano Ribeiro de Mendonça, Mariana Peres de Limainfo:eu-repo/semantics/openAccessCarvalho, Samuel de Pádua Chaves eCalegario, NatalinoSilva, Fabyano Fonseca eBorges, Luís Antônio CoimbraMendonça, Adriano Ribeiro deLima, Mariana Peres de2015-11-06T18:31:49Zoai:cerne.ufla.br:article/84Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:53:29.746475Cerne (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp
title GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp
spellingShingle GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp
Carvalho, Samuel de Pádua Chaves e
Probability models
prediction
forestry growth and yield
title_short GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp
title_full GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp
title_fullStr GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp
title_full_unstemmed GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp
title_sort GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp
author Carvalho, Samuel de Pádua Chaves e
author_facet Carvalho, Samuel de Pádua Chaves e
Calegario, Natalino
Silva, Fabyano Fonseca e
Borges, Luís Antônio Coimbra
Mendonça, Adriano Ribeiro de
Lima, Mariana Peres de
author_role author
author2 Calegario, Natalino
Silva, Fabyano Fonseca e
Borges, Luís Antônio Coimbra
Mendonça, Adriano Ribeiro de
Lima, Mariana Peres de
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Carvalho, Samuel de Pádua Chaves e
Calegario, Natalino
Silva, Fabyano Fonseca e
Borges, Luís Antônio Coimbra
Mendonça, Adriano Ribeiro de
Lima, Mariana Peres de
dc.subject.por.fl_str_mv Probability models
prediction
forestry growth and yield
topic Probability models
prediction
forestry growth and yield
description This paper aims to propose the use of generalized nonlinear models for prediction of basal area growth and yield of total volume of the hybrid Eucalyptus urocamaldulensis, in a stand situation in a central region in state of Minas Gerais. The used methodology allows to work with data in its original form without the necessity of transformation of variables, and generate highly accurate models. To evaluate the fitting quality, it was proposed the Bayesian information criterion, of the Akaike, and test the maximum likelihood, beyond the standard error of estimate, and residual graphics. The models were used with a good performance, highly accurate and parsimonious estimates of the variables proposed, with errors reduced to 12% for basal area and 4% for prediction of the volume.
publishDate 2015
dc.date.none.fl_str_mv 2015-05-12
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/84
url https://cerne.ufla.br/site/index.php/CERNE/article/view/84
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/84/68
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CERNE
CERNE
publisher.none.fl_str_mv CERNE
CERNE
dc.source.none.fl_str_mv CERNE; Vol. 17 No. 4 (2011); 541-548
CERNE; v. 17 n. 4 (2011); 541-548
2317-6342
0104-7760
reponame:Cerne (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Cerne (Online)
collection Cerne (Online)
repository.name.fl_str_mv Cerne (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv cerne@dcf.ufla.br||cerne@dcf.ufla.br
_version_ 1799874939169275904