GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Cerne (Online) |
Texto Completo: | https://cerne.ufla.br/site/index.php/CERNE/article/view/84 |
Resumo: | This paper aims to propose the use of generalized nonlinear models for prediction of basal area growth and yield of total volume of the hybrid Eucalyptus urocamaldulensis, in a stand situation in a central region in state of Minas Gerais. The used methodology allows to work with data in its original form without the necessity of transformation of variables, and generate highly accurate models. To evaluate the fitting quality, it was proposed the Bayesian information criterion, of the Akaike, and test the maximum likelihood, beyond the standard error of estimate, and residual graphics. The models were used with a good performance, highly accurate and parsimonious estimates of the variables proposed, with errors reduced to 12% for basal area and 4% for prediction of the volume. |
id |
UFLA-3_ae0cf5e8205541b6bf5cb07b31025486 |
---|---|
oai_identifier_str |
oai:cerne.ufla.br:article/84 |
network_acronym_str |
UFLA-3 |
network_name_str |
Cerne (Online) |
repository_id_str |
|
spelling |
GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus spProbability modelspredictionforestry growth and yieldThis paper aims to propose the use of generalized nonlinear models for prediction of basal area growth and yield of total volume of the hybrid Eucalyptus urocamaldulensis, in a stand situation in a central region in state of Minas Gerais. The used methodology allows to work with data in its original form without the necessity of transformation of variables, and generate highly accurate models. To evaluate the fitting quality, it was proposed the Bayesian information criterion, of the Akaike, and test the maximum likelihood, beyond the standard error of estimate, and residual graphics. The models were used with a good performance, highly accurate and parsimonious estimates of the variables proposed, with errors reduced to 12% for basal area and 4% for prediction of the volume.CERNECERNE2015-05-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/84CERNE; Vol. 17 No. 4 (2011); 541-548CERNE; v. 17 n. 4 (2011); 541-5482317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://cerne.ufla.br/site/index.php/CERNE/article/view/84/68Copyright (c) 2015 Samuel de Pádua Chaves e Carvalho, Natalino Calegario, Fabyano Fonseca e Silva, Luís Antônio Coimbra Borges, Adriano Ribeiro de Mendonça, Mariana Peres de Limainfo:eu-repo/semantics/openAccessCarvalho, Samuel de Pádua Chaves eCalegario, NatalinoSilva, Fabyano Fonseca eBorges, Luís Antônio CoimbraMendonça, Adriano Ribeiro deLima, Mariana Peres de2015-11-06T18:31:49Zoai:cerne.ufla.br:article/84Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:53:29.746475Cerne (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp |
title |
GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp |
spellingShingle |
GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp Carvalho, Samuel de Pádua Chaves e Probability models prediction forestry growth and yield |
title_short |
GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp |
title_full |
GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp |
title_fullStr |
GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp |
title_full_unstemmed |
GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp |
title_sort |
GENERALIZED NONLINEAR MODELS APPLIED TO THE PREDICTION OF BASAL AREA AND VOLUME OF Eucalyptus sp |
author |
Carvalho, Samuel de Pádua Chaves e |
author_facet |
Carvalho, Samuel de Pádua Chaves e Calegario, Natalino Silva, Fabyano Fonseca e Borges, Luís Antônio Coimbra Mendonça, Adriano Ribeiro de Lima, Mariana Peres de |
author_role |
author |
author2 |
Calegario, Natalino Silva, Fabyano Fonseca e Borges, Luís Antônio Coimbra Mendonça, Adriano Ribeiro de Lima, Mariana Peres de |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Carvalho, Samuel de Pádua Chaves e Calegario, Natalino Silva, Fabyano Fonseca e Borges, Luís Antônio Coimbra Mendonça, Adriano Ribeiro de Lima, Mariana Peres de |
dc.subject.por.fl_str_mv |
Probability models prediction forestry growth and yield |
topic |
Probability models prediction forestry growth and yield |
description |
This paper aims to propose the use of generalized nonlinear models for prediction of basal area growth and yield of total volume of the hybrid Eucalyptus urocamaldulensis, in a stand situation in a central region in state of Minas Gerais. The used methodology allows to work with data in its original form without the necessity of transformation of variables, and generate highly accurate models. To evaluate the fitting quality, it was proposed the Bayesian information criterion, of the Akaike, and test the maximum likelihood, beyond the standard error of estimate, and residual graphics. The models were used with a good performance, highly accurate and parsimonious estimates of the variables proposed, with errors reduced to 12% for basal area and 4% for prediction of the volume. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05-12 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://cerne.ufla.br/site/index.php/CERNE/article/view/84 |
url |
https://cerne.ufla.br/site/index.php/CERNE/article/view/84 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://cerne.ufla.br/site/index.php/CERNE/article/view/84/68 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
CERNE CERNE |
publisher.none.fl_str_mv |
CERNE CERNE |
dc.source.none.fl_str_mv |
CERNE; Vol. 17 No. 4 (2011); 541-548 CERNE; v. 17 n. 4 (2011); 541-548 2317-6342 0104-7760 reponame:Cerne (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Cerne (Online) |
collection |
Cerne (Online) |
repository.name.fl_str_mv |
Cerne (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
cerne@dcf.ufla.br||cerne@dcf.ufla.br |
_version_ |
1799874939169275904 |