STATISTICAL MODELS IN AGRICULTURE: BIOMETRICAL METHODS FOR EVALUATING PHENOTYPIC STABILITY IN PLANT BREEDING

Detalhes bibliográficos
Autor(a) principal: Ferreira, Daniel Furtado
Data de Publicação: 2015
Outros Autores: Demétrio, Clarice Garcia Borges, Manly, Bryan Frederick John, Machado, Amauri de Almeida, Vencovsky, Roland
Tipo de documento: Artigo
Idioma: por
Título da fonte: Cerne (Online)
Texto Completo: https://cerne.ufla.br/site/index.php/CERNE/article/view/572
Resumo: This paper reviews the main concepts of several methods of phenotypic stability analysis and points out their advantages and limitations. It was concluded that the simple linear regression method of Eberhart & Russel (1966) and the bi segmented regression method of Silva & Barreto (1985) have only historical importance nowadays. Moreover, based on factors discussed in the paper, it is recommended that the regression models of Toler & Burrows (1998) and the Additive Main effects and Multiplicative Interactions (AMMI) model should be used simultaneously to study and to estimate phenotypic stability effects.
id UFLA-3_c385b4ff6fff4664925496033c0d2d6d
oai_identifier_str oai:cerne.ufla.br:article/572
network_acronym_str UFLA-3
network_name_str Cerne (Online)
repository_id_str
spelling STATISTICAL MODELS IN AGRICULTURE: BIOMETRICAL METHODS FOR EVALUATING PHENOTYPIC STABILITY IN PLANT BREEDINGAMMInon-linear statistical modelslinear regression modelsThis paper reviews the main concepts of several methods of phenotypic stability analysis and points out their advantages and limitations. It was concluded that the simple linear regression method of Eberhart & Russel (1966) and the bi segmented regression method of Silva & Barreto (1985) have only historical importance nowadays. Moreover, based on factors discussed in the paper, it is recommended that the regression models of Toler & Burrows (1998) and the Additive Main effects and Multiplicative Interactions (AMMI) model should be used simultaneously to study and to estimate phenotypic stability effects.CERNECERNE2015-10-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/572CERNE; Vol. 12 No. 4 (2006); 373-388CERNE; v. 12 n. 4 (2006); 373-3882317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://cerne.ufla.br/site/index.php/CERNE/article/view/572/489Copyright (c) 2015 CERNEinfo:eu-repo/semantics/openAccessFerreira, Daniel FurtadoDemétrio, Clarice Garcia BorgesManly, Bryan Frederick JohnMachado, Amauri de AlmeidaVencovsky, Roland2015-10-22T10:27:20Zoai:cerne.ufla.br:article/572Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:53:59.263529Cerne (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv STATISTICAL MODELS IN AGRICULTURE: BIOMETRICAL METHODS FOR EVALUATING PHENOTYPIC STABILITY IN PLANT BREEDING
title STATISTICAL MODELS IN AGRICULTURE: BIOMETRICAL METHODS FOR EVALUATING PHENOTYPIC STABILITY IN PLANT BREEDING
spellingShingle STATISTICAL MODELS IN AGRICULTURE: BIOMETRICAL METHODS FOR EVALUATING PHENOTYPIC STABILITY IN PLANT BREEDING
Ferreira, Daniel Furtado
AMMI
non-linear statistical models
linear regression models
title_short STATISTICAL MODELS IN AGRICULTURE: BIOMETRICAL METHODS FOR EVALUATING PHENOTYPIC STABILITY IN PLANT BREEDING
title_full STATISTICAL MODELS IN AGRICULTURE: BIOMETRICAL METHODS FOR EVALUATING PHENOTYPIC STABILITY IN PLANT BREEDING
title_fullStr STATISTICAL MODELS IN AGRICULTURE: BIOMETRICAL METHODS FOR EVALUATING PHENOTYPIC STABILITY IN PLANT BREEDING
title_full_unstemmed STATISTICAL MODELS IN AGRICULTURE: BIOMETRICAL METHODS FOR EVALUATING PHENOTYPIC STABILITY IN PLANT BREEDING
title_sort STATISTICAL MODELS IN AGRICULTURE: BIOMETRICAL METHODS FOR EVALUATING PHENOTYPIC STABILITY IN PLANT BREEDING
author Ferreira, Daniel Furtado
author_facet Ferreira, Daniel Furtado
Demétrio, Clarice Garcia Borges
Manly, Bryan Frederick John
Machado, Amauri de Almeida
Vencovsky, Roland
author_role author
author2 Demétrio, Clarice Garcia Borges
Manly, Bryan Frederick John
Machado, Amauri de Almeida
Vencovsky, Roland
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ferreira, Daniel Furtado
Demétrio, Clarice Garcia Borges
Manly, Bryan Frederick John
Machado, Amauri de Almeida
Vencovsky, Roland
dc.subject.por.fl_str_mv AMMI
non-linear statistical models
linear regression models
topic AMMI
non-linear statistical models
linear regression models
description This paper reviews the main concepts of several methods of phenotypic stability analysis and points out their advantages and limitations. It was concluded that the simple linear regression method of Eberhart & Russel (1966) and the bi segmented regression method of Silva & Barreto (1985) have only historical importance nowadays. Moreover, based on factors discussed in the paper, it is recommended that the regression models of Toler & Burrows (1998) and the Additive Main effects and Multiplicative Interactions (AMMI) model should be used simultaneously to study and to estimate phenotypic stability effects.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-08
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/572
url https://cerne.ufla.br/site/index.php/CERNE/article/view/572
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/572/489
dc.rights.driver.fl_str_mv Copyright (c) 2015 CERNE
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2015 CERNE
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CERNE
CERNE
publisher.none.fl_str_mv CERNE
CERNE
dc.source.none.fl_str_mv CERNE; Vol. 12 No. 4 (2006); 373-388
CERNE; v. 12 n. 4 (2006); 373-388
2317-6342
0104-7760
reponame:Cerne (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Cerne (Online)
collection Cerne (Online)
repository.name.fl_str_mv Cerne (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv cerne@dcf.ufla.br||cerne@dcf.ufla.br
_version_ 1799874941075587072