GROUPING OF FOREST SPECIES BY SIMILARITY OF PHYSICAL-ANATOMICAL CHARACTERISTICS AND USES OF WOOD

Detalhes bibliográficos
Autor(a) principal: Lobão, Moisés Silveira
Data de Publicação: 2015
Outros Autores: Chagas, Matheus Peres, Costa, Daniel de Souza Pinto, Ferreira, Angel Thiane Boschiero, Jr, Carlos Roberto Sette, Carvalho, Israel Lima, Fo, Mario Tomazello
Tipo de documento: Artigo
Idioma: por
Título da fonte: Cerne (Online)
Texto Completo: https://cerne.ufla.br/site/index.php/CERNE/article/view/107
Resumo: The comprehension of the physical properties and anatomical characteristics of wood from different tree species is fundamental for its classification and grouping aiming to recommend the applications and common uses. With these objectives in this study, were analyzed the anatomical and physical properties of wood from 15 arboreal species, determining the basic density, fiber dimension and vessel elements. The multivariate statistical analysis for grouping of different wood species through the principal component analysis and cluster was applied. The results showed significant variations in the parameters of wood basic density and anatomy, demonstrating its effectiveness in the differentiation of 15 forest species. The values of wood basic density and anatomical features used in multivariate statistical analysis enabled to create a dendrogram of dissimilarity (Euclidean distance) with different groups of forest species through their similarities. This grouping allowed to recommended the applications of solid wood in four different groups, from sports equipment and aeromodelling to floors and heavy construction.
id UFLA-3_e9df55a0e5312a44ea2307890d95bfba
oai_identifier_str oai:cerne.ufla.br:article/107
network_acronym_str UFLA-3
network_name_str Cerne (Online)
repository_id_str
spelling GROUPING OF FOREST SPECIES BY SIMILARITY OF PHYSICAL-ANATOMICAL CHARACTERISTICS AND USES OF WOODWood anatomymultivariate analysisphysical propertiesThe comprehension of the physical properties and anatomical characteristics of wood from different tree species is fundamental for its classification and grouping aiming to recommend the applications and common uses. With these objectives in this study, were analyzed the anatomical and physical properties of wood from 15 arboreal species, determining the basic density, fiber dimension and vessel elements. The multivariate statistical analysis for grouping of different wood species through the principal component analysis and cluster was applied. The results showed significant variations in the parameters of wood basic density and anatomy, demonstrating its effectiveness in the differentiation of 15 forest species. The values of wood basic density and anatomical features used in multivariate statistical analysis enabled to create a dendrogram of dissimilarity (Euclidean distance) with different groups of forest species through their similarities. This grouping allowed to recommended the applications of solid wood in four different groups, from sports equipment and aeromodelling to floors and heavy construction.CERNECERNE2015-05-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/107CERNE; VOL 16, No 5 (2010) - SUPLEMENTO EBRAMEM; 097–105CERNE; v. 16, n. 5 (2010) Suplemento EBRAMEM; 097–1052317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://cerne.ufla.br/site/index.php/CERNE/article/view/107/81Copyright (c) 2015 Moisés Silveira Lobão, Matheus Peres Chagas, Daniel de Souza Pinto Costa, Angel Thiane Boschiero Ferreira, Carlos Roberto Sette Jr, Israel Lima Carvalho, Mario Tomazello Foinfo:eu-repo/semantics/openAccessLobão, Moisés SilveiraChagas, Matheus PeresCosta, Daniel de Souza PintoFerreira, Angel Thiane BoschieroJr, Carlos Roberto SetteCarvalho, Israel LimaFo, Mario Tomazello2015-11-06T16:05:41Zoai:cerne.ufla.br:article/107Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:53:30.716739Cerne (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv GROUPING OF FOREST SPECIES BY SIMILARITY OF PHYSICAL-ANATOMICAL CHARACTERISTICS AND USES OF WOOD
title GROUPING OF FOREST SPECIES BY SIMILARITY OF PHYSICAL-ANATOMICAL CHARACTERISTICS AND USES OF WOOD
spellingShingle GROUPING OF FOREST SPECIES BY SIMILARITY OF PHYSICAL-ANATOMICAL CHARACTERISTICS AND USES OF WOOD
Lobão, Moisés Silveira
Wood anatomy
multivariate analysis
physical properties
title_short GROUPING OF FOREST SPECIES BY SIMILARITY OF PHYSICAL-ANATOMICAL CHARACTERISTICS AND USES OF WOOD
title_full GROUPING OF FOREST SPECIES BY SIMILARITY OF PHYSICAL-ANATOMICAL CHARACTERISTICS AND USES OF WOOD
title_fullStr GROUPING OF FOREST SPECIES BY SIMILARITY OF PHYSICAL-ANATOMICAL CHARACTERISTICS AND USES OF WOOD
title_full_unstemmed GROUPING OF FOREST SPECIES BY SIMILARITY OF PHYSICAL-ANATOMICAL CHARACTERISTICS AND USES OF WOOD
title_sort GROUPING OF FOREST SPECIES BY SIMILARITY OF PHYSICAL-ANATOMICAL CHARACTERISTICS AND USES OF WOOD
author Lobão, Moisés Silveira
author_facet Lobão, Moisés Silveira
Chagas, Matheus Peres
Costa, Daniel de Souza Pinto
Ferreira, Angel Thiane Boschiero
Jr, Carlos Roberto Sette
Carvalho, Israel Lima
Fo, Mario Tomazello
author_role author
author2 Chagas, Matheus Peres
Costa, Daniel de Souza Pinto
Ferreira, Angel Thiane Boschiero
Jr, Carlos Roberto Sette
Carvalho, Israel Lima
Fo, Mario Tomazello
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Lobão, Moisés Silveira
Chagas, Matheus Peres
Costa, Daniel de Souza Pinto
Ferreira, Angel Thiane Boschiero
Jr, Carlos Roberto Sette
Carvalho, Israel Lima
Fo, Mario Tomazello
dc.subject.por.fl_str_mv Wood anatomy
multivariate analysis
physical properties
topic Wood anatomy
multivariate analysis
physical properties
description The comprehension of the physical properties and anatomical characteristics of wood from different tree species is fundamental for its classification and grouping aiming to recommend the applications and common uses. With these objectives in this study, were analyzed the anatomical and physical properties of wood from 15 arboreal species, determining the basic density, fiber dimension and vessel elements. The multivariate statistical analysis for grouping of different wood species through the principal component analysis and cluster was applied. The results showed significant variations in the parameters of wood basic density and anatomy, demonstrating its effectiveness in the differentiation of 15 forest species. The values of wood basic density and anatomical features used in multivariate statistical analysis enabled to create a dendrogram of dissimilarity (Euclidean distance) with different groups of forest species through their similarities. This grouping allowed to recommended the applications of solid wood in four different groups, from sports equipment and aeromodelling to floors and heavy construction.
publishDate 2015
dc.date.none.fl_str_mv 2015-05-13
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/107
url https://cerne.ufla.br/site/index.php/CERNE/article/view/107
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/107/81
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CERNE
CERNE
publisher.none.fl_str_mv CERNE
CERNE
dc.source.none.fl_str_mv CERNE; VOL 16, No 5 (2010) - SUPLEMENTO EBRAMEM; 097–105
CERNE; v. 16, n. 5 (2010) Suplemento EBRAMEM; 097–105
2317-6342
0104-7760
reponame:Cerne (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Cerne (Online)
collection Cerne (Online)
repository.name.fl_str_mv Cerne (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv cerne@dcf.ufla.br||cerne@dcf.ufla.br
_version_ 1799874939191296000