PHYSICAL PROPERTIES OF EUCALYPTUS WOOD CHARCOAL

Detalhes bibliográficos
Autor(a) principal: Pereira, Emanuele Graciosa
Data de Publicação: 2020
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cerne (Online)
Texto Completo: https://cerne.ufla.br/site/index.php/CERNE/article/view/2352
Resumo: The high cost of importing and transporting coal as well as recent concerns over CO2 emissions from the use of non-renewable fuels, has led the steel industry to use the charcoal from eucalyptus wood as the main bio-reducer. In this context, charcoal production has increased in recent years, and the cooling processes of carbonization kilns emerge as practices to reduce costs and increase productivity by reducing the time of the production process. In these processes, the knowledge of the physical and thermal properties of eucalyptus charcoal is of fundamental importance in the design of equipment and development of cooling technologies. However, literature about physical properties for eucalyptus wood charcoal is largely unavailable in the literature, especially the thermal and aerodynamic properties, for the same material. The aim of this study was to evaluate the physical properties of eucalyptus charcoal: apparent and bulk density, pressure drop, porosity, thermal conductivity and specific heat to support the design of production and cooling systems using heat exchangers. It was found that the pressure drop could be expressed according Forchheimer’s law and logarithmical empirical models, resulting in R2 above 0.95. The apparent and bulk densities were measured as 344.6 ± 17.6 and 155.3 ± 4.1 kg m-3, respectively, and the charcoal porosity was 54.8 ± 2%. The thermal conductivity and specific heat were 0.030 ± 0.0027 W m-1 K-1 and 1017 ± 74 J kg-1 K-1, respectively.
id UFLA-3_fc272f22698848d4e0025cfdc58a0a48
oai_identifier_str oai:cerne.ufla.br:article/2352
network_acronym_str UFLA-3
network_name_str Cerne (Online)
repository_id_str
spelling PHYSICAL PROPERTIES OF EUCALYPTUS WOOD CHARCOALEnglishThe high cost of importing and transporting coal as well as recent concerns over CO2 emissions from the use of non-renewable fuels, has led the steel industry to use the charcoal from eucalyptus wood as the main bio-reducer. In this context, charcoal production has increased in recent years, and the cooling processes of carbonization kilns emerge as practices to reduce costs and increase productivity by reducing the time of the production process. In these processes, the knowledge of the physical and thermal properties of eucalyptus charcoal is of fundamental importance in the design of equipment and development of cooling technologies. However, literature about physical properties for eucalyptus wood charcoal is largely unavailable in the literature, especially the thermal and aerodynamic properties, for the same material. The aim of this study was to evaluate the physical properties of eucalyptus charcoal: apparent and bulk density, pressure drop, porosity, thermal conductivity and specific heat to support the design of production and cooling systems using heat exchangers. It was found that the pressure drop could be expressed according Forchheimer’s law and logarithmical empirical models, resulting in R2 above 0.95. The apparent and bulk densities were measured as 344.6 ± 17.6 and 155.3 ± 4.1 kg m-3, respectively, and the charcoal porosity was 54.8 ± 2%. The thermal conductivity and specific heat were 0.030 ± 0.0027 W m-1 K-1 and 1017 ± 74 J kg-1 K-1, respectively.CERNECERNE2020-05-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/2352CERNE; Vol. 26 No. 1 (2020); 109-117CERNE; v. 26 n. 1 (2020); 109-1172317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://cerne.ufla.br/site/index.php/CERNE/article/view/2352/1179Copyright (c) 2020 CERNEinfo:eu-repo/semantics/openAccessPereira, Emanuele Graciosa2020-05-15T19:57:22Zoai:cerne.ufla.br:article/2352Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:54:43.905690Cerne (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv PHYSICAL PROPERTIES OF EUCALYPTUS WOOD CHARCOAL
English
title PHYSICAL PROPERTIES OF EUCALYPTUS WOOD CHARCOAL
spellingShingle PHYSICAL PROPERTIES OF EUCALYPTUS WOOD CHARCOAL
Pereira, Emanuele Graciosa
title_short PHYSICAL PROPERTIES OF EUCALYPTUS WOOD CHARCOAL
title_full PHYSICAL PROPERTIES OF EUCALYPTUS WOOD CHARCOAL
title_fullStr PHYSICAL PROPERTIES OF EUCALYPTUS WOOD CHARCOAL
title_full_unstemmed PHYSICAL PROPERTIES OF EUCALYPTUS WOOD CHARCOAL
title_sort PHYSICAL PROPERTIES OF EUCALYPTUS WOOD CHARCOAL
author Pereira, Emanuele Graciosa
author_facet Pereira, Emanuele Graciosa
author_role author
dc.contributor.author.fl_str_mv Pereira, Emanuele Graciosa
description The high cost of importing and transporting coal as well as recent concerns over CO2 emissions from the use of non-renewable fuels, has led the steel industry to use the charcoal from eucalyptus wood as the main bio-reducer. In this context, charcoal production has increased in recent years, and the cooling processes of carbonization kilns emerge as practices to reduce costs and increase productivity by reducing the time of the production process. In these processes, the knowledge of the physical and thermal properties of eucalyptus charcoal is of fundamental importance in the design of equipment and development of cooling technologies. However, literature about physical properties for eucalyptus wood charcoal is largely unavailable in the literature, especially the thermal and aerodynamic properties, for the same material. The aim of this study was to evaluate the physical properties of eucalyptus charcoal: apparent and bulk density, pressure drop, porosity, thermal conductivity and specific heat to support the design of production and cooling systems using heat exchangers. It was found that the pressure drop could be expressed according Forchheimer’s law and logarithmical empirical models, resulting in R2 above 0.95. The apparent and bulk densities were measured as 344.6 ± 17.6 and 155.3 ± 4.1 kg m-3, respectively, and the charcoal porosity was 54.8 ± 2%. The thermal conductivity and specific heat were 0.030 ± 0.0027 W m-1 K-1 and 1017 ± 74 J kg-1 K-1, respectively.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/2352
url https://cerne.ufla.br/site/index.php/CERNE/article/view/2352
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/2352/1179
dc.rights.driver.fl_str_mv Copyright (c) 2020 CERNE
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 CERNE
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CERNE
CERNE
publisher.none.fl_str_mv CERNE
CERNE
dc.source.none.fl_str_mv CERNE; Vol. 26 No. 1 (2020); 109-117
CERNE; v. 26 n. 1 (2020); 109-117
2317-6342
0104-7760
reponame:Cerne (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Cerne (Online)
collection Cerne (Online)
repository.name.fl_str_mv Cerne (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv cerne@dcf.ufla.br||cerne@dcf.ufla.br
_version_ 1799874944135331840