Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Coffee Science (Online) |
Texto Completo: | https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041 |
Resumo: | objective of this study was to evaluate the spatial dependence on chemical soil attributes by means of the geostatistical association and multivariate analysis (exploratory factor analysis), aiming to understand the behavior of the attributes in the soil, thus being able to contribute to the planning of fertilization, seeking greater productivity and sustainability of coffee growing. The research was carried in a grid of 63 sampling points, mounted on a Coffea arabica L. plantation in the cerrado region. Initially was held exploratory factor analysis that generated four factors that together accounted for 97.05% of the total variation of the data. In the geostatistical analysis it was found that the factors 1 and 3 showed spatial dependence, for which the data were interpolated by ordinary kriging (geostatistical). Already the factors 2 and 4 showed pure nugget effect (spatial independence) which held data interpolation by the inverse square of the distance method (classical statistics). The factors 1 and 3 strongly represent the acidity of soil fertility and the soil organic matter. Factors 2 and 4 represent the relationship between the attributes of the ground. The results showed that the use of multivariate techniques in combination with geostatistics can contribute to the coffee crop management in the Cerrado region. |
id |
UFLA-4_2dfd2c31cf9ee0ba65c183535dcb38a4 |
---|---|
oai_identifier_str |
oai:coffeescience.ufla.br:article/1041 |
network_acronym_str |
UFLA-4 |
network_name_str |
Coffee Science (Online) |
repository_id_str |
|
spelling |
Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growingGeoestatística e análise fatorial exploratória para representação espacial de atributos químicos do solo, na cafeiculturaCoffee growingsoil attributesfertilization planninggeostatisticsmultivariate analysisCafeiculturaatributos do soloplanejamento da adubaçãogeoestatisticaanálise multivariadaobjective of this study was to evaluate the spatial dependence on chemical soil attributes by means of the geostatistical association and multivariate analysis (exploratory factor analysis), aiming to understand the behavior of the attributes in the soil, thus being able to contribute to the planning of fertilization, seeking greater productivity and sustainability of coffee growing. The research was carried in a grid of 63 sampling points, mounted on a Coffea arabica L. plantation in the cerrado region. Initially was held exploratory factor analysis that generated four factors that together accounted for 97.05% of the total variation of the data. In the geostatistical analysis it was found that the factors 1 and 3 showed spatial dependence, for which the data were interpolated by ordinary kriging (geostatistical). Already the factors 2 and 4 showed pure nugget effect (spatial independence) which held data interpolation by the inverse square of the distance method (classical statistics). The factors 1 and 3 strongly represent the acidity of soil fertility and the soil organic matter. Factors 2 and 4 represent the relationship between the attributes of the ground. The results showed that the use of multivariate techniques in combination with geostatistics can contribute to the coffee crop management in the Cerrado region.Objetivou-se, neste estudo, avaliar a dependência espacial dos atributos químicos do solo por meio da associação da geoestatísticas e da análise multivariada (Análise Fatorial Exploratória), buscando entender o comportamento dos atributos no solo e contribuir para o planejamento das adubações, a produtividade e sustentabilidade da cafeicultura. O experimento foi desenvolvido em uma malha de 63 pontos amostrais, disposto em uma lavoura de Coffea arabica L., na região de cerrado. Foi realizada incialmente a análise fatorial exploratória que gerou quatro fatores que representaram, juntos, 97,05 % da variação total dos dados. Na análise geoestatística foi verificado que os fatores 1 e 3 apresentaram dependência espacial, para os quais os dados foram interpolados por krigagem ordinária (geoestatística). Já os fatores 2 e 4 apresentaram efeito pepita puro (independência espacial) ,sendo realizada a interpolação dos dados pelo método do inverso do quadrado das distâncias (estatística clássica). Sendo que os fatores 1 e 3 representam fortemente a acidez do solo, fertilidade e matéria orgânica do solo. Os fatores 2 e 4 representam a relação entre estes atributos no solo. Os resultados mostraram que a utilização de técnicas multivariadas em associação com geoestatística podem contribuir para o manejo da cafeicultura na região do cerrado.Editora UFLA2016-05-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/zipapplication/zipapplication/ziphttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041Coffee Science - ISSN 1984-3909; Vol. 11 No. 2 (2016); 195 - 203Coffee Science; Vol. 11 Núm. 2 (2016); 195 - 203Coffee Science; v. 11 n. 2 (2016); 195 - 2031984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/pdf_1041https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1557https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1558https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1559Copyright (c) 2016 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessAlmeida, Leandro da SilvaGuimarães, Ednaldo Carvalho2016-05-13T03:36:21Zoai:coffeescience.ufla.br:article/1041Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:55.635654Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing Geoestatística e análise fatorial exploratória para representação espacial de atributos químicos do solo, na cafeicultura |
title |
Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing |
spellingShingle |
Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing Almeida, Leandro da Silva Coffee growing soil attributes fertilization planning geostatistics multivariate analysis Cafeicultura atributos do solo planejamento da adubação geoestatistica análise multivariada |
title_short |
Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing |
title_full |
Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing |
title_fullStr |
Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing |
title_full_unstemmed |
Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing |
title_sort |
Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing |
author |
Almeida, Leandro da Silva |
author_facet |
Almeida, Leandro da Silva Guimarães, Ednaldo Carvalho |
author_role |
author |
author2 |
Guimarães, Ednaldo Carvalho |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Leandro da Silva Guimarães, Ednaldo Carvalho |
dc.subject.por.fl_str_mv |
Coffee growing soil attributes fertilization planning geostatistics multivariate analysis Cafeicultura atributos do solo planejamento da adubação geoestatistica análise multivariada |
topic |
Coffee growing soil attributes fertilization planning geostatistics multivariate analysis Cafeicultura atributos do solo planejamento da adubação geoestatistica análise multivariada |
description |
objective of this study was to evaluate the spatial dependence on chemical soil attributes by means of the geostatistical association and multivariate analysis (exploratory factor analysis), aiming to understand the behavior of the attributes in the soil, thus being able to contribute to the planning of fertilization, seeking greater productivity and sustainability of coffee growing. The research was carried in a grid of 63 sampling points, mounted on a Coffea arabica L. plantation in the cerrado region. Initially was held exploratory factor analysis that generated four factors that together accounted for 97.05% of the total variation of the data. In the geostatistical analysis it was found that the factors 1 and 3 showed spatial dependence, for which the data were interpolated by ordinary kriging (geostatistical). Already the factors 2 and 4 showed pure nugget effect (spatial independence) which held data interpolation by the inverse square of the distance method (classical statistics). The factors 1 and 3 strongly represent the acidity of soil fertility and the soil organic matter. Factors 2 and 4 represent the relationship between the attributes of the ground. The results showed that the use of multivariate techniques in combination with geostatistics can contribute to the coffee crop management in the Cerrado region. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05-13 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041 |
url |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/pdf_1041 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1557 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1558 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1559 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/zip application/zip application/zip |
dc.publisher.none.fl_str_mv |
Editora UFLA |
publisher.none.fl_str_mv |
Editora UFLA |
dc.source.none.fl_str_mv |
Coffee Science - ISSN 1984-3909; Vol. 11 No. 2 (2016); 195 - 203 Coffee Science; Vol. 11 Núm. 2 (2016); 195 - 203 Coffee Science; v. 11 n. 2 (2016); 195 - 203 1984-3909 reponame:Coffee Science (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Coffee Science (Online) |
collection |
Coffee Science (Online) |
repository.name.fl_str_mv |
Coffee Science (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com |
_version_ |
1799874920442757120 |