Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing

Detalhes bibliográficos
Autor(a) principal: Almeida, Leandro da Silva
Data de Publicação: 2016
Outros Autores: Guimarães, Ednaldo Carvalho
Tipo de documento: Artigo
Idioma: por
Título da fonte: Coffee Science (Online)
Texto Completo: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041
Resumo: objective of this study was to evaluate the spatial dependence on chemical soil attributes by means of the geostatistical association and multivariate analysis (exploratory factor analysis), aiming to understand the behavior of the attributes in the soil, thus being able to contribute to the planning of fertilization, seeking greater productivity and sustainability of coffee growing. The research was carried in a grid of 63 sampling points, mounted on a Coffea arabica L. plantation in the cerrado region. Initially was held exploratory factor analysis that generated four factors that together accounted for 97.05% of the total variation of the data. In the geostatistical analysis it was found that the factors 1 and 3 showed spatial dependence, for which the data were interpolated by ordinary kriging (geostatistical). Already the factors 2 and 4 showed pure nugget effect (spatial independence) which held data interpolation by the inverse square of the distance method (classical statistics). The factors 1 and 3 strongly represent the acidity of soil fertility and the soil organic matter. Factors 2 and 4 represent the relationship between the attributes of the ground. The results showed that the use of multivariate techniques in combination with geostatistics can contribute to the coffee crop management in the Cerrado region.
id UFLA-4_2dfd2c31cf9ee0ba65c183535dcb38a4
oai_identifier_str oai:coffeescience.ufla.br:article/1041
network_acronym_str UFLA-4
network_name_str Coffee Science (Online)
repository_id_str
spelling Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growingGeoestatística e análise fatorial exploratória para representação espacial de atributos químicos do solo, na cafeiculturaCoffee growingsoil attributesfertilization planninggeostatisticsmultivariate analysisCafeiculturaatributos do soloplanejamento da adubaçãogeoestatisticaanálise multivariadaobjective of this study was to evaluate the spatial dependence on chemical soil attributes by means of the geostatistical association and multivariate analysis (exploratory factor analysis), aiming to understand the behavior of the attributes in the soil, thus being able to contribute to the planning of fertilization, seeking greater productivity and sustainability of coffee growing. The research was carried in a grid of 63 sampling points, mounted on a Coffea arabica L. plantation in the cerrado region. Initially was held exploratory factor analysis that generated four factors that together accounted for 97.05% of the total variation of the data. In the geostatistical analysis it was found that the factors 1 and 3 showed spatial dependence, for which the data were interpolated by ordinary kriging (geostatistical). Already the factors 2 and 4 showed pure nugget effect (spatial independence) which held data interpolation by the inverse square of the distance method (classical statistics). The factors 1 and 3 strongly represent the acidity of soil fertility and the soil organic matter. Factors 2 and 4 represent the relationship between the attributes of the ground. The results showed that the use of multivariate techniques in combination with geostatistics can contribute to the coffee crop management in the Cerrado region.Objetivou-se, neste estudo, avaliar a dependência espacial dos atributos químicos do solo por meio da associação da geoestatísticas e da análise multivariada (Análise Fatorial Exploratória), buscando entender o comportamento dos atributos no solo e contribuir para o planejamento das adubações, a produtividade e sustentabilidade da cafeicultura. O experimento foi desenvolvido em uma malha de 63 pontos amostrais, disposto em uma lavoura de Coffea arabica L., na região de cerrado. Foi realizada incialmente a análise fatorial exploratória que gerou quatro fatores que representaram, juntos, 97,05 % da variação total dos dados. Na análise geoestatística foi verificado que os fatores 1 e 3 apresentaram dependência espacial, para os quais os dados foram interpolados por krigagem ordinária (geoestatística). Já os fatores 2 e 4 apresentaram efeito pepita puro (independência espacial) ,sendo realizada a interpolação dos dados pelo método do inverso do quadrado das distâncias (estatística clássica). Sendo que os fatores 1 e 3 representam fortemente a acidez do solo, fertilidade e matéria orgânica do solo. Os fatores 2 e 4 representam a relação entre estes atributos no solo. Os resultados mostraram que a utilização de técnicas multivariadas em associação com geoestatística podem contribuir para o manejo da cafeicultura na região do cerrado.Editora UFLA2016-05-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/zipapplication/zipapplication/ziphttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041Coffee Science - ISSN 1984-3909; Vol. 11 No. 2 (2016); 195 - 203Coffee Science; Vol. 11 Núm. 2 (2016); 195 - 203Coffee Science; v. 11 n. 2 (2016); 195 - 2031984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/pdf_1041https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1557https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1558https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1559Copyright (c) 2016 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessAlmeida, Leandro da SilvaGuimarães, Ednaldo Carvalho2016-05-13T03:36:21Zoai:coffeescience.ufla.br:article/1041Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:55.635654Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing
Geoestatística e análise fatorial exploratória para representação espacial de atributos químicos do solo, na cafeicultura
title Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing
spellingShingle Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing
Almeida, Leandro da Silva
Coffee growing
soil attributes
fertilization planning
geostatistics
multivariate analysis
Cafeicultura
atributos do solo
planejamento da adubação
geoestatistica
análise multivariada
title_short Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing
title_full Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing
title_fullStr Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing
title_full_unstemmed Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing
title_sort Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing
author Almeida, Leandro da Silva
author_facet Almeida, Leandro da Silva
Guimarães, Ednaldo Carvalho
author_role author
author2 Guimarães, Ednaldo Carvalho
author2_role author
dc.contributor.author.fl_str_mv Almeida, Leandro da Silva
Guimarães, Ednaldo Carvalho
dc.subject.por.fl_str_mv Coffee growing
soil attributes
fertilization planning
geostatistics
multivariate analysis
Cafeicultura
atributos do solo
planejamento da adubação
geoestatistica
análise multivariada
topic Coffee growing
soil attributes
fertilization planning
geostatistics
multivariate analysis
Cafeicultura
atributos do solo
planejamento da adubação
geoestatistica
análise multivariada
description objective of this study was to evaluate the spatial dependence on chemical soil attributes by means of the geostatistical association and multivariate analysis (exploratory factor analysis), aiming to understand the behavior of the attributes in the soil, thus being able to contribute to the planning of fertilization, seeking greater productivity and sustainability of coffee growing. The research was carried in a grid of 63 sampling points, mounted on a Coffea arabica L. plantation in the cerrado region. Initially was held exploratory factor analysis that generated four factors that together accounted for 97.05% of the total variation of the data. In the geostatistical analysis it was found that the factors 1 and 3 showed spatial dependence, for which the data were interpolated by ordinary kriging (geostatistical). Already the factors 2 and 4 showed pure nugget effect (spatial independence) which held data interpolation by the inverse square of the distance method (classical statistics). The factors 1 and 3 strongly represent the acidity of soil fertility and the soil organic matter. Factors 2 and 4 represent the relationship between the attributes of the ground. The results showed that the use of multivariate techniques in combination with geostatistics can contribute to the coffee crop management in the Cerrado region.
publishDate 2016
dc.date.none.fl_str_mv 2016-05-13
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041
url https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/pdf_1041
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1557
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1558
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1041/1559
dc.rights.driver.fl_str_mv Copyright (c) 2016 Coffee Science - ISSN 1984-3909
https://creativecommons.org/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 Coffee Science - ISSN 1984-3909
https://creativecommons.org/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/zip
application/zip
application/zip
dc.publisher.none.fl_str_mv Editora UFLA
publisher.none.fl_str_mv Editora UFLA
dc.source.none.fl_str_mv Coffee Science - ISSN 1984-3909; Vol. 11 No. 2 (2016); 195 - 203
Coffee Science; Vol. 11 Núm. 2 (2016); 195 - 203
Coffee Science; v. 11 n. 2 (2016); 195 - 203
1984-3909
reponame:Coffee Science (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Coffee Science (Online)
collection Coffee Science (Online)
repository.name.fl_str_mv Coffee Science (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com
_version_ 1799874920442757120