Comparison between the soil chemical atributes sampled conventionaly and in grid
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Coffee Science (Online) |
Texto Completo: | https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1188 |
Resumo: | The aim in this article was to characterize the structure and magnitude of the spatial distribution of soil attributes on a coffee field and map these attributes in order to identify the spatial dependence of them. It was aimed to compare the attribute amount when it was sampled conventionally or in grid sampling. This study was carried out on the Brejão farm in Três Pontas, Minas Gerais state, Brazil. As a data base were used pH, P, Prem, K, Ca, Mg, Al, H + Al, m, T, t, SB, V e MO sampled conventionally or sampled in a 64 point squared grid georeferenced with 36 points from grid zoom as well. The analysis of these data by geostatistics tools allowed characterize the spatial variability which allowed creating maps of spatial distribution of the variables. It was possible to identify differences presented in the amount of soil attributes sampled conventionally and in georreferenced grid sampling in precision coffee culture. |
id |
UFLA-4_6aa90c9ee8f5e9699886375279368a20 |
---|---|
oai_identifier_str |
oai:coffeescience.ufla.br:article/1188 |
network_acronym_str |
UFLA-4 |
network_name_str |
Coffee Science (Online) |
repository_id_str |
|
spelling |
Comparison between the soil chemical atributes sampled conventionaly and in gridComparativo entre os atributos químicos do solo amostrados de forma convencional e em malhaPrecision Agriculturegeostatisticsmanagementcoffee plantAgricultura de PrecisãogeoestatísticagerenciamentocafeeiroThe aim in this article was to characterize the structure and magnitude of the spatial distribution of soil attributes on a coffee field and map these attributes in order to identify the spatial dependence of them. It was aimed to compare the attribute amount when it was sampled conventionally or in grid sampling. This study was carried out on the Brejão farm in Três Pontas, Minas Gerais state, Brazil. As a data base were used pH, P, Prem, K, Ca, Mg, Al, H + Al, m, T, t, SB, V e MO sampled conventionally or sampled in a 64 point squared grid georeferenced with 36 points from grid zoom as well. The analysis of these data by geostatistics tools allowed characterize the spatial variability which allowed creating maps of spatial distribution of the variables. It was possible to identify differences presented in the amount of soil attributes sampled conventionally and in georreferenced grid sampling in precision coffee culture.O objetivo do presente trabalho foi caracterizar a estrutura e a magnitude da distribuição espacial de atributos do solo de uma lavoura cafeeira, realizando o mapeamento destes atributos para visualizar a distribuição espacial. Objetivou-se ainda comparar os teores apresentados pelos atributos do solo na amostragem convencional e amostragem em grade. Este trabalho foi conduzido na fazenda Brejão no município de Três Pontas, Minas Gerais, utilizando-se os atributos do solo: pH, P, Prem, K, Ca, Mg, Al, H + Al, m, T, t, SB, V e MO amostrados de forma convencional e em grade amostral quadrada de 64 pontos georreferenciados acrescida de 36 pontos de grade zoom. A análise destes dados por meio das técnicas geoestatísticas possibilitou caracterizar a variabilidade espacial dos atributos do solo em estudo, permitindo o mapeamento destas variáveis. Foi possível identificar as diferenças apresentadas nos teores dos atributos do solo comparativamente para a amostragem convencional e em grade georreferenciada para aplicação na cafeicultura de precisão.Editora UFLA2017-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1188Coffee Science - ISSN 1984-3909; Vol. 12 No. 1 (2017); 17 - 29Coffee Science; Vol. 12 Núm. 1 (2017); 17 - 29Coffee Science; v. 12 n. 1 (2017); 17 - 291984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1188/pdf_1188https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1188/1662Copyright (c) 2017 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessFerraz, Gabriel Araújo e SilvaSilva, Fábio Moreira daOliveira, Marcelo Silva deSilva, Flávio Castro daCarvalho, Luis Carlos Cirilo2017-03-30T16:15:17Zoai:coffeescience.ufla.br:article/1188Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:59.059639Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Comparison between the soil chemical atributes sampled conventionaly and in grid Comparativo entre os atributos químicos do solo amostrados de forma convencional e em malha |
title |
Comparison between the soil chemical atributes sampled conventionaly and in grid |
spellingShingle |
Comparison between the soil chemical atributes sampled conventionaly and in grid Ferraz, Gabriel Araújo e Silva Precision Agriculture geostatistics management coffee plant Agricultura de Precisão geoestatística gerenciamento cafeeiro |
title_short |
Comparison between the soil chemical atributes sampled conventionaly and in grid |
title_full |
Comparison between the soil chemical atributes sampled conventionaly and in grid |
title_fullStr |
Comparison between the soil chemical atributes sampled conventionaly and in grid |
title_full_unstemmed |
Comparison between the soil chemical atributes sampled conventionaly and in grid |
title_sort |
Comparison between the soil chemical atributes sampled conventionaly and in grid |
author |
Ferraz, Gabriel Araújo e Silva |
author_facet |
Ferraz, Gabriel Araújo e Silva Silva, Fábio Moreira da Oliveira, Marcelo Silva de Silva, Flávio Castro da Carvalho, Luis Carlos Cirilo |
author_role |
author |
author2 |
Silva, Fábio Moreira da Oliveira, Marcelo Silva de Silva, Flávio Castro da Carvalho, Luis Carlos Cirilo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Ferraz, Gabriel Araújo e Silva Silva, Fábio Moreira da Oliveira, Marcelo Silva de Silva, Flávio Castro da Carvalho, Luis Carlos Cirilo |
dc.subject.por.fl_str_mv |
Precision Agriculture geostatistics management coffee plant Agricultura de Precisão geoestatística gerenciamento cafeeiro |
topic |
Precision Agriculture geostatistics management coffee plant Agricultura de Precisão geoestatística gerenciamento cafeeiro |
description |
The aim in this article was to characterize the structure and magnitude of the spatial distribution of soil attributes on a coffee field and map these attributes in order to identify the spatial dependence of them. It was aimed to compare the attribute amount when it was sampled conventionally or in grid sampling. This study was carried out on the Brejão farm in Três Pontas, Minas Gerais state, Brazil. As a data base were used pH, P, Prem, K, Ca, Mg, Al, H + Al, m, T, t, SB, V e MO sampled conventionally or sampled in a 64 point squared grid georeferenced with 36 points from grid zoom as well. The analysis of these data by geostatistics tools allowed characterize the spatial variability which allowed creating maps of spatial distribution of the variables. It was possible to identify differences presented in the amount of soil attributes sampled conventionally and in georreferenced grid sampling in precision coffee culture. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1188 |
url |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1188 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1188/pdf_1188 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1188/1662 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Editora UFLA |
publisher.none.fl_str_mv |
Editora UFLA |
dc.source.none.fl_str_mv |
Coffee Science - ISSN 1984-3909; Vol. 12 No. 1 (2017); 17 - 29 Coffee Science; Vol. 12 Núm. 1 (2017); 17 - 29 Coffee Science; v. 12 n. 1 (2017); 17 - 29 1984-3909 reponame:Coffee Science (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Coffee Science (Online) |
collection |
Coffee Science (Online) |
repository.name.fl_str_mv |
Coffee Science (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com |
_version_ |
1799874920972288000 |