Multivariate statistical applied to data costs post-harvest coffee
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Coffee Science (Online) |
Texto Completo: | https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244 |
Resumo: | The choice of method of processing coffee is decisive on the profitability of the coffee activity, and will depend on several factors. Thus, due to the existence of many variables is common producer to question the viability of certain types of processing. Thus, the objective in this research was carried out a study of the major influencing factors on the cost of post-harvest coffee. Forty-six farms in the regions of the Cerrado, Matas de Minas and southern Minas Gerais State answered a questionnaire in order to enable this analysis. The application of multivariate techniques of cluster analysis, factor analysis and principal component analysis, allowed us to conclude that farms with higher costs simulated were those with the highest percentages of wet coffee production. |
id |
UFLA-4_ca7152908ed13c147d099bf15279c021 |
---|---|
oai_identifier_str |
oai:coffeescience.ufla.br:article/1244 |
network_acronym_str |
UFLA-4 |
network_name_str |
Coffee Science (Online) |
repository_id_str |
|
spelling |
Multivariate statistical applied to data costs post-harvest coffeeEstatística multivariada aplicada em dados de custos da fase de pós-colheita do caféClusteringprincipal componentsfactor analysisAgrupamentocomponentes principaisanálise de fatoresThe choice of method of processing coffee is decisive on the profitability of the coffee activity, and will depend on several factors. Thus, due to the existence of many variables is common producer to question the viability of certain types of processing. Thus, the objective in this research was carried out a study of the major influencing factors on the cost of post-harvest coffee. Forty-six farms in the regions of the Cerrado, Matas de Minas and southern Minas Gerais State answered a questionnaire in order to enable this analysis. The application of multivariate techniques of cluster analysis, factor analysis and principal component analysis, allowed us to conclude that farms with higher costs simulated were those with the highest percentages of wet coffee production.A escolha do modo de processamento do café é decisiva na rentabilidade da atividade cafeeira, e dependerá de diversos fatores. Assim, em decorrência da existência de tantas variáveis é comum o produtor questionar a viabilidade de determinados tipos de processamentos. Desse modo, o objetivo deste trabalho foi realizar um estudo dos principais fatores influenciadores no custo da pós-colheita do café. Quarenta e seis fazendas das regiões do Cerrado, Matas de Minas e Sul de Minas Gerais responderam a um questionário elaborado no sentido de possibilitar esta análise. A aplicação das técnicas multivariadas de análise de agrupamento, análise de fatores e análise de componentes principais, possibilitou concluir que as fazendas com maiores custos simulados foram as que possuíam as maiores porcentagens de produção de café via úmida.Editora UFLA2017-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentCDF V2 Document, corrupt: Can't expand summary_infoapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/vnd.openxmlformats-officedocument.wordprocessingml.documenthttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244Coffee Science - ISSN 1984-3909; Vol. 12 No. 2 (2017); 223-230Coffee Science; Vol. 12 Núm. 2 (2017); 223-230Coffee Science; v. 12 n. 2 (2017); 223-2301984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244/pdf_1244_2https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244/1729https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244/1730https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244/1731https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244/1732Copyright (c) 2017 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessSantos, Rafael VargasVieira, Henrique DuarteBorém, Flávio MeiraPrado, Mariele Vilela Bernardes2017-06-06T13:29:05Zoai:coffeescience.ufla.br:article/1244Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:54:00.543779Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Multivariate statistical applied to data costs post-harvest coffee Estatística multivariada aplicada em dados de custos da fase de pós-colheita do café |
title |
Multivariate statistical applied to data costs post-harvest coffee |
spellingShingle |
Multivariate statistical applied to data costs post-harvest coffee Santos, Rafael Vargas Clustering principal components factor analysis Agrupamento componentes principais análise de fatores |
title_short |
Multivariate statistical applied to data costs post-harvest coffee |
title_full |
Multivariate statistical applied to data costs post-harvest coffee |
title_fullStr |
Multivariate statistical applied to data costs post-harvest coffee |
title_full_unstemmed |
Multivariate statistical applied to data costs post-harvest coffee |
title_sort |
Multivariate statistical applied to data costs post-harvest coffee |
author |
Santos, Rafael Vargas |
author_facet |
Santos, Rafael Vargas Vieira, Henrique Duarte Borém, Flávio Meira Prado, Mariele Vilela Bernardes |
author_role |
author |
author2 |
Vieira, Henrique Duarte Borém, Flávio Meira Prado, Mariele Vilela Bernardes |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Santos, Rafael Vargas Vieira, Henrique Duarte Borém, Flávio Meira Prado, Mariele Vilela Bernardes |
dc.subject.por.fl_str_mv |
Clustering principal components factor analysis Agrupamento componentes principais análise de fatores |
topic |
Clustering principal components factor analysis Agrupamento componentes principais análise de fatores |
description |
The choice of method of processing coffee is decisive on the profitability of the coffee activity, and will depend on several factors. Thus, due to the existence of many variables is common producer to question the viability of certain types of processing. Thus, the objective in this research was carried out a study of the major influencing factors on the cost of post-harvest coffee. Forty-six farms in the regions of the Cerrado, Matas de Minas and southern Minas Gerais State answered a questionnaire in order to enable this analysis. The application of multivariate techniques of cluster analysis, factor analysis and principal component analysis, allowed us to conclude that farms with higher costs simulated were those with the highest percentages of wet coffee production. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-04 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244 |
url |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244/pdf_1244_2 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244/1729 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244/1730 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244/1731 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1244/1732 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/vnd.openxmlformats-officedocument.wordprocessingml.document CDF V2 Document, corrupt: Can't expand summary_info application/vnd.openxmlformats-officedocument.wordprocessingml.document application/vnd.openxmlformats-officedocument.wordprocessingml.document |
dc.publisher.none.fl_str_mv |
Editora UFLA |
publisher.none.fl_str_mv |
Editora UFLA |
dc.source.none.fl_str_mv |
Coffee Science - ISSN 1984-3909; Vol. 12 No. 2 (2017); 223-230 Coffee Science; Vol. 12 Núm. 2 (2017); 223-230 Coffee Science; v. 12 n. 2 (2017); 223-230 1984-3909 reponame:Coffee Science (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Coffee Science (Online) |
collection |
Coffee Science (Online) |
repository.name.fl_str_mv |
Coffee Science (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com |
_version_ |
1799874921010036736 |