Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Coffee Science (Online) |
Texto Completo: | https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760 |
Resumo: | The use of remote sensing techniques represents a significant advance for the coffee crop data, mainly to complement the currently techniques that have been used. In this context, this study aimed to map coffee areas in high resolution images using object-oriented images analyses methods, with k nearest neighbor (KNN) and support vector machine (SVM) algorithm, and pixel-by-pixel methods, using maximum likelihood (Maxver) algorithm. The study area was mapped using two classes: ‘coffee’ and ‘other uses’. We performed the mappings accuracy analysis using reference map and it was found that the pixel by pixel classification with maximum likelihood algorithm has the best results, with kappa value of 0.78 and 94.61% of accuracy. In this study, we concluded that the pixel by pixel method of Maxver algorithm seems more efficient to discriminate coffee areas when considering only two types of land use, coffee and no coffee, in high resolution images. |
id |
UFLA-4_fc87f397cc668cfc9764cbdb410e5f53 |
---|---|
oai_identifier_str |
oai:coffeescience.ufla.br:article/760 |
network_acronym_str |
UFLA-4 |
network_name_str |
Coffee Science (Online) |
repository_id_str |
|
spelling |
Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas GeraisComparação de classificadores supervisionados na discriminação de áreas cafeeiras em Campos Gerais - Minas GeraisRemote sensingcoffee farmingobject-oriented image analysesaccuracySensoriamento remotocafeiculturaanálise de imagem orientada a objetosexatidãoThe use of remote sensing techniques represents a significant advance for the coffee crop data, mainly to complement the currently techniques that have been used. In this context, this study aimed to map coffee areas in high resolution images using object-oriented images analyses methods, with k nearest neighbor (KNN) and support vector machine (SVM) algorithm, and pixel-by-pixel methods, using maximum likelihood (Maxver) algorithm. The study area was mapped using two classes: ‘coffee’ and ‘other uses’. We performed the mappings accuracy analysis using reference map and it was found that the pixel by pixel classification with maximum likelihood algorithm has the best results, with kappa value of 0.78 and 94.61% of accuracy. In this study, we concluded that the pixel by pixel method of Maxver algorithm seems more efficient to discriminate coffee areas when considering only two types of land use, coffee and no coffee, in high resolution images.O uso de técnicas de sensoriamento remoto orbital representa um significativo avanço para os levantamentos de dados da cafeicultura, principalmente visando a complementação das técnicas utilizadas atualmente. Objetivou-se,neste trabalho, mapear áreas cafeeiras em imagens de alta resolução, a partir de métodos de classificação por análise de imagens orientada a objeto, com os algoritmos k nearest neighbor (KNN), support vector machine (SVM) e pixel-a-pixel, com o algoritmo maximum likelihood (Maxver). A área de estudo foi mapeada, em duas classes: ‘café’ e ‘outros usos’. Realizouse a análise da exatidão dos mapeamentos a partir da comparação com o mapa de referência da área e foi constatado que a classificação pixel a pixel, pelo método maximum likelihood, obteve os melhores resultados, com 0,78 de índice kappa e 94,61% de exatidão. Conclui-se, a partir deste estudo que o método pixel a pixel do algoritmo Maxver mostra-se mais eficiente para discriminar café, quando se considera somente dois tipos de uso da terra, café e não café, em imagens de alta resolução.Editora UFLA2014-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/mswordapplication/ziphttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/760Coffee Science - ISSN 1984-3909; Vol. 9 No. 4 (2014); 546 - 557Coffee Science; Vol. 9 Núm. 4 (2014); 546 - 557Coffee Science; v. 9 n. 4 (2014); 546 - 5571984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/pdf_139https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/1341https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/1342Copyright (c) 2014 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessSarmiento, Christiany MattioliRamirez, Gláucia MirandaColtri, Priscila PereiraSilva, Luis Felipe Lima eNassur, Otávio Augusto CarvalhoSoares, Jefferson Francisco2015-03-11T17:44:56Zoai:coffeescience.ufla.br:article/760Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:49.381013Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais Comparação de classificadores supervisionados na discriminação de áreas cafeeiras em Campos Gerais - Minas Gerais |
title |
Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais |
spellingShingle |
Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais Sarmiento, Christiany Mattioli Remote sensing coffee farming object-oriented image analyses accuracy Sensoriamento remoto cafeicultura análise de imagem orientada a objetos exatidão |
title_short |
Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais |
title_full |
Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais |
title_fullStr |
Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais |
title_full_unstemmed |
Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais |
title_sort |
Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais |
author |
Sarmiento, Christiany Mattioli |
author_facet |
Sarmiento, Christiany Mattioli Ramirez, Gláucia Miranda Coltri, Priscila Pereira Silva, Luis Felipe Lima e Nassur, Otávio Augusto Carvalho Soares, Jefferson Francisco |
author_role |
author |
author2 |
Ramirez, Gláucia Miranda Coltri, Priscila Pereira Silva, Luis Felipe Lima e Nassur, Otávio Augusto Carvalho Soares, Jefferson Francisco |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Sarmiento, Christiany Mattioli Ramirez, Gláucia Miranda Coltri, Priscila Pereira Silva, Luis Felipe Lima e Nassur, Otávio Augusto Carvalho Soares, Jefferson Francisco |
dc.subject.por.fl_str_mv |
Remote sensing coffee farming object-oriented image analyses accuracy Sensoriamento remoto cafeicultura análise de imagem orientada a objetos exatidão |
topic |
Remote sensing coffee farming object-oriented image analyses accuracy Sensoriamento remoto cafeicultura análise de imagem orientada a objetos exatidão |
description |
The use of remote sensing techniques represents a significant advance for the coffee crop data, mainly to complement the currently techniques that have been used. In this context, this study aimed to map coffee areas in high resolution images using object-oriented images analyses methods, with k nearest neighbor (KNN) and support vector machine (SVM) algorithm, and pixel-by-pixel methods, using maximum likelihood (Maxver) algorithm. The study area was mapped using two classes: ‘coffee’ and ‘other uses’. We performed the mappings accuracy analysis using reference map and it was found that the pixel by pixel classification with maximum likelihood algorithm has the best results, with kappa value of 0.78 and 94.61% of accuracy. In this study, we concluded that the pixel by pixel method of Maxver algorithm seems more efficient to discriminate coffee areas when considering only two types of land use, coffee and no coffee, in high resolution images. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760 |
url |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/pdf_139 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/1341 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/1342 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2014 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2014 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/msword application/zip |
dc.publisher.none.fl_str_mv |
Editora UFLA |
publisher.none.fl_str_mv |
Editora UFLA |
dc.source.none.fl_str_mv |
Coffee Science - ISSN 1984-3909; Vol. 9 No. 4 (2014); 546 - 557 Coffee Science; Vol. 9 Núm. 4 (2014); 546 - 557 Coffee Science; v. 9 n. 4 (2014); 546 - 557 1984-3909 reponame:Coffee Science (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Coffee Science (Online) |
collection |
Coffee Science (Online) |
repository.name.fl_str_mv |
Coffee Science (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com |
_version_ |
1799874919813611520 |