Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais

Detalhes bibliográficos
Autor(a) principal: Sarmiento, Christiany Mattioli
Data de Publicação: 2014
Outros Autores: Ramirez, Gláucia Miranda, Coltri, Priscila Pereira, Silva, Luis Felipe Lima e, Nassur, Otávio Augusto Carvalho, Soares, Jefferson Francisco
Tipo de documento: Artigo
Idioma: por
Título da fonte: Coffee Science (Online)
Texto Completo: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760
Resumo: The use of remote sensing techniques represents a significant advance for the coffee crop data, mainly to complement the currently techniques that have been used. In this context, this study aimed to map coffee areas in high resolution images using object-oriented images analyses methods, with k nearest neighbor (KNN) and support vector machine (SVM) algorithm, and pixel-by-pixel methods, using maximum likelihood (Maxver) algorithm. The study area was mapped using two classes: ‘coffee’ and ‘other uses’. We performed the mappings accuracy analysis using reference map and it was found that the pixel by pixel classification with maximum likelihood algorithm has the best results, with kappa value of 0.78 and 94.61% of accuracy. In this study, we concluded that the pixel by pixel method of Maxver algorithm seems more efficient to discriminate coffee areas when considering only two types of land use, coffee and no coffee, in high resolution images.
id UFLA-4_fc87f397cc668cfc9764cbdb410e5f53
oai_identifier_str oai:coffeescience.ufla.br:article/760
network_acronym_str UFLA-4
network_name_str Coffee Science (Online)
repository_id_str
spelling Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas GeraisComparação de classificadores supervisionados na discriminação de áreas cafeeiras em Campos Gerais - Minas GeraisRemote sensingcoffee farmingobject-oriented image analysesaccuracySensoriamento remotocafeiculturaanálise de imagem orientada a objetosexatidãoThe use of remote sensing techniques represents a significant advance for the coffee crop data, mainly to complement the currently techniques that have been used. In this context, this study aimed to map coffee areas in high resolution images using object-oriented images analyses methods, with k nearest neighbor (KNN) and support vector machine (SVM) algorithm, and pixel-by-pixel methods, using maximum likelihood (Maxver) algorithm. The study area was mapped using two classes: ‘coffee’ and ‘other uses’. We performed the mappings accuracy analysis using reference map and it was found that the pixel by pixel classification with maximum likelihood algorithm has the best results, with kappa value of 0.78 and 94.61% of accuracy. In this study, we concluded that the pixel by pixel method of Maxver algorithm seems more efficient to discriminate coffee areas when considering only two types of land use, coffee and no coffee, in high resolution images.O uso de técnicas de sensoriamento remoto orbital representa um significativo avanço para os levantamentos de dados da cafeicultura, principalmente visando a complementação das técnicas utilizadas atualmente. Objetivou-se,neste trabalho, mapear áreas cafeeiras em imagens de alta resolução, a partir de métodos de classificação por análise de imagens orientada a objeto, com os algoritmos k nearest neighbor (KNN), support vector machine (SVM) e pixel-a-pixel, com o algoritmo maximum likelihood (Maxver). A área de estudo foi mapeada, em duas classes: ‘café’ e ‘outros usos’. Realizouse a análise da exatidão dos mapeamentos a partir da comparação com o mapa de referência da área e foi constatado que a classificação pixel a pixel, pelo método maximum likelihood, obteve os melhores resultados, com 0,78 de índice kappa e 94,61% de exatidão. Conclui-se, a partir deste estudo que o método pixel a pixel do algoritmo Maxver mostra-se mais eficiente para discriminar café, quando se considera somente dois tipos de uso da terra, café e não café, em imagens de alta resolução.Editora UFLA2014-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/mswordapplication/ziphttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/760Coffee Science - ISSN 1984-3909; Vol. 9 No. 4 (2014); 546 - 557Coffee Science; Vol. 9 Núm. 4 (2014); 546 - 557Coffee Science; v. 9 n. 4 (2014); 546 - 5571984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/pdf_139https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/1341https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/1342Copyright (c) 2014 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessSarmiento, Christiany MattioliRamirez, Gláucia MirandaColtri, Priscila PereiraSilva, Luis Felipe Lima eNassur, Otávio Augusto CarvalhoSoares, Jefferson Francisco2015-03-11T17:44:56Zoai:coffeescience.ufla.br:article/760Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:49.381013Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais
Comparação de classificadores supervisionados na discriminação de áreas cafeeiras em Campos Gerais - Minas Gerais
title Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais
spellingShingle Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais
Sarmiento, Christiany Mattioli
Remote sensing
coffee farming
object-oriented image analyses
accuracy
Sensoriamento remoto
cafeicultura
análise de imagem orientada a objetos
exatidão
title_short Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais
title_full Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais
title_fullStr Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais
title_full_unstemmed Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais
title_sort Comparison of supervised classifiers in discrimination coffee areas filds in Campos Gerais - Minas Gerais
author Sarmiento, Christiany Mattioli
author_facet Sarmiento, Christiany Mattioli
Ramirez, Gláucia Miranda
Coltri, Priscila Pereira
Silva, Luis Felipe Lima e
Nassur, Otávio Augusto Carvalho
Soares, Jefferson Francisco
author_role author
author2 Ramirez, Gláucia Miranda
Coltri, Priscila Pereira
Silva, Luis Felipe Lima e
Nassur, Otávio Augusto Carvalho
Soares, Jefferson Francisco
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Sarmiento, Christiany Mattioli
Ramirez, Gláucia Miranda
Coltri, Priscila Pereira
Silva, Luis Felipe Lima e
Nassur, Otávio Augusto Carvalho
Soares, Jefferson Francisco
dc.subject.por.fl_str_mv Remote sensing
coffee farming
object-oriented image analyses
accuracy
Sensoriamento remoto
cafeicultura
análise de imagem orientada a objetos
exatidão
topic Remote sensing
coffee farming
object-oriented image analyses
accuracy
Sensoriamento remoto
cafeicultura
análise de imagem orientada a objetos
exatidão
description The use of remote sensing techniques represents a significant advance for the coffee crop data, mainly to complement the currently techniques that have been used. In this context, this study aimed to map coffee areas in high resolution images using object-oriented images analyses methods, with k nearest neighbor (KNN) and support vector machine (SVM) algorithm, and pixel-by-pixel methods, using maximum likelihood (Maxver) algorithm. The study area was mapped using two classes: ‘coffee’ and ‘other uses’. We performed the mappings accuracy analysis using reference map and it was found that the pixel by pixel classification with maximum likelihood algorithm has the best results, with kappa value of 0.78 and 94.61% of accuracy. In this study, we concluded that the pixel by pixel method of Maxver algorithm seems more efficient to discriminate coffee areas when considering only two types of land use, coffee and no coffee, in high resolution images.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-09
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760
url https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/pdf_139
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/1341
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/760/1342
dc.rights.driver.fl_str_mv Copyright (c) 2014 Coffee Science - ISSN 1984-3909
https://creativecommons.org/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2014 Coffee Science - ISSN 1984-3909
https://creativecommons.org/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/msword
application/zip
dc.publisher.none.fl_str_mv Editora UFLA
publisher.none.fl_str_mv Editora UFLA
dc.source.none.fl_str_mv Coffee Science - ISSN 1984-3909; Vol. 9 No. 4 (2014); 546 - 557
Coffee Science; Vol. 9 Núm. 4 (2014); 546 - 557
Coffee Science; v. 9 n. 4 (2014); 546 - 557
1984-3909
reponame:Coffee Science (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Coffee Science (Online)
collection Coffee Science (Online)
repository.name.fl_str_mv Coffee Science (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com
_version_ 1799874919813611520