A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML

Detalhes bibliográficos
Autor(a) principal: Àjàdí, Odéjobí Odétúnjí
Data de Publicação: 2007
Tipo de documento: Artigo
Idioma: eng
Título da fonte: INFOCOMP: Jornal de Ciência da Computação
Texto Completo: https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185
Resumo: We present a quantitative model of Standard Yorùbá (SY) intonation; it is designed to have parameters that are linguistically interpretable. The model is built and trained on speech data from a native speaker of SY. The resulting model reproduces the data well: its Root Mean Square prediction error (RMSE) is 14:00 Hz on a test set. We find that intonation is used to mark sentence and phrase boundaries: beginning syllables are systematically stronger, while ending syllables are systematically weaker than the medial syllables. The M tone is the strongest and the H tone is the weakest, though the differences are modest. We see comparable amounts of carry-over and anticipatory co-articulation. The resulting model for SY shows similar characteristics when compared to Mandarin and Cantonese intonation models.
id UFLA-5_10dc32ebf0e9e85f097aec57382dd45d
oai_identifier_str oai:infocomp.dcc.ufla.br:article/185
network_acronym_str UFLA-5
network_name_str INFOCOMP: Jornal de Ciência da Computação
repository_id_str
spelling A Quantitative Model of Yorùbá Speech Intonation Using Stem-MLIntonation modellingSpeech synthesisQuantitative modelWe present a quantitative model of Standard Yorùbá (SY) intonation; it is designed to have parameters that are linguistically interpretable. The model is built and trained on speech data from a native speaker of SY. The resulting model reproduces the data well: its Root Mean Square prediction error (RMSE) is 14:00 Hz on a test set. We find that intonation is used to mark sentence and phrase boundaries: beginning syllables are systematically stronger, while ending syllables are systematically weaker than the medial syllables. The M tone is the strongest and the H tone is the weakest, though the differences are modest. We see comparable amounts of carry-over and anticipatory co-articulation. The resulting model for SY shows similar characteristics when compared to Mandarin and Cantonese intonation models.Editora da UFLA2007-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185INFOCOMP Journal of Computer Science; Vol. 6 No. 3 (2007): September, 2007; 47-551982-33631807-4545reponame:INFOCOMP: Jornal de Ciência da Computaçãoinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185/170Copyright (c) 2016 INFOCOMP Journal of Computer Scienceinfo:eu-repo/semantics/openAccessÀjàdí, Odéjobí Odétúnjí2015-06-27T23:27:22Zoai:infocomp.dcc.ufla.br:article/185Revistahttps://infocomp.dcc.ufla.br/index.php/infocompPUBhttps://infocomp.dcc.ufla.br/index.php/infocomp/oaiinfocomp@dcc.ufla.br||apfreire@dcc.ufla.br1982-33631807-4545opendoar:2024-05-21T19:54:22.844685INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML
title A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML
spellingShingle A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML
Àjàdí, Odéjobí Odétúnjí
Intonation modelling
Speech synthesis
Quantitative model
title_short A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML
title_full A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML
title_fullStr A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML
title_full_unstemmed A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML
title_sort A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML
author Àjàdí, Odéjobí Odétúnjí
author_facet Àjàdí, Odéjobí Odétúnjí
author_role author
dc.contributor.author.fl_str_mv Àjàdí, Odéjobí Odétúnjí
dc.subject.por.fl_str_mv Intonation modelling
Speech synthesis
Quantitative model
topic Intonation modelling
Speech synthesis
Quantitative model
description We present a quantitative model of Standard Yorùbá (SY) intonation; it is designed to have parameters that are linguistically interpretable. The model is built and trained on speech data from a native speaker of SY. The resulting model reproduces the data well: its Root Mean Square prediction error (RMSE) is 14:00 Hz on a test set. We find that intonation is used to mark sentence and phrase boundaries: beginning syllables are systematically stronger, while ending syllables are systematically weaker than the medial syllables. The M tone is the strongest and the H tone is the weakest, though the differences are modest. We see comparable amounts of carry-over and anticipatory co-articulation. The resulting model for SY shows similar characteristics when compared to Mandarin and Cantonese intonation models.
publishDate 2007
dc.date.none.fl_str_mv 2007-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185
url https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185/170
dc.rights.driver.fl_str_mv Copyright (c) 2016 INFOCOMP Journal of Computer Science
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 INFOCOMP Journal of Computer Science
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora da UFLA
publisher.none.fl_str_mv Editora da UFLA
dc.source.none.fl_str_mv INFOCOMP Journal of Computer Science; Vol. 6 No. 3 (2007): September, 2007; 47-55
1982-3363
1807-4545
reponame:INFOCOMP: Jornal de Ciência da Computação
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str INFOCOMP: Jornal de Ciência da Computação
collection INFOCOMP: Jornal de Ciência da Computação
repository.name.fl_str_mv INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv infocomp@dcc.ufla.br||apfreire@dcc.ufla.br
_version_ 1799874740449443840