A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | INFOCOMP: Jornal de Ciência da Computação |
Texto Completo: | https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185 |
Resumo: | We present a quantitative model of Standard Yorùbá (SY) intonation; it is designed to have parameters that are linguistically interpretable. The model is built and trained on speech data from a native speaker of SY. The resulting model reproduces the data well: its Root Mean Square prediction error (RMSE) is 14:00 Hz on a test set. We find that intonation is used to mark sentence and phrase boundaries: beginning syllables are systematically stronger, while ending syllables are systematically weaker than the medial syllables. The M tone is the strongest and the H tone is the weakest, though the differences are modest. We see comparable amounts of carry-over and anticipatory co-articulation. The resulting model for SY shows similar characteristics when compared to Mandarin and Cantonese intonation models. |
id |
UFLA-5_10dc32ebf0e9e85f097aec57382dd45d |
---|---|
oai_identifier_str |
oai:infocomp.dcc.ufla.br:article/185 |
network_acronym_str |
UFLA-5 |
network_name_str |
INFOCOMP: Jornal de Ciência da Computação |
repository_id_str |
|
spelling |
A Quantitative Model of Yorùbá Speech Intonation Using Stem-MLIntonation modellingSpeech synthesisQuantitative modelWe present a quantitative model of Standard Yorùbá (SY) intonation; it is designed to have parameters that are linguistically interpretable. The model is built and trained on speech data from a native speaker of SY. The resulting model reproduces the data well: its Root Mean Square prediction error (RMSE) is 14:00 Hz on a test set. We find that intonation is used to mark sentence and phrase boundaries: beginning syllables are systematically stronger, while ending syllables are systematically weaker than the medial syllables. The M tone is the strongest and the H tone is the weakest, though the differences are modest. We see comparable amounts of carry-over and anticipatory co-articulation. The resulting model for SY shows similar characteristics when compared to Mandarin and Cantonese intonation models.Editora da UFLA2007-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185INFOCOMP Journal of Computer Science; Vol. 6 No. 3 (2007): September, 2007; 47-551982-33631807-4545reponame:INFOCOMP: Jornal de Ciência da Computaçãoinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185/170Copyright (c) 2016 INFOCOMP Journal of Computer Scienceinfo:eu-repo/semantics/openAccessÀjàdí, Odéjobí Odétúnjí2015-06-27T23:27:22Zoai:infocomp.dcc.ufla.br:article/185Revistahttps://infocomp.dcc.ufla.br/index.php/infocompPUBhttps://infocomp.dcc.ufla.br/index.php/infocomp/oaiinfocomp@dcc.ufla.br||apfreire@dcc.ufla.br1982-33631807-4545opendoar:2024-05-21T19:54:22.844685INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML |
title |
A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML |
spellingShingle |
A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML Àjàdí, Odéjobí Odétúnjí Intonation modelling Speech synthesis Quantitative model |
title_short |
A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML |
title_full |
A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML |
title_fullStr |
A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML |
title_full_unstemmed |
A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML |
title_sort |
A Quantitative Model of Yorùbá Speech Intonation Using Stem-ML |
author |
Àjàdí, Odéjobí Odétúnjí |
author_facet |
Àjàdí, Odéjobí Odétúnjí |
author_role |
author |
dc.contributor.author.fl_str_mv |
Àjàdí, Odéjobí Odétúnjí |
dc.subject.por.fl_str_mv |
Intonation modelling Speech synthesis Quantitative model |
topic |
Intonation modelling Speech synthesis Quantitative model |
description |
We present a quantitative model of Standard Yorùbá (SY) intonation; it is designed to have parameters that are linguistically interpretable. The model is built and trained on speech data from a native speaker of SY. The resulting model reproduces the data well: its Root Mean Square prediction error (RMSE) is 14:00 Hz on a test set. We find that intonation is used to mark sentence and phrase boundaries: beginning syllables are systematically stronger, while ending syllables are systematically weaker than the medial syllables. The M tone is the strongest and the H tone is the weakest, though the differences are modest. We see comparable amounts of carry-over and anticipatory co-articulation. The resulting model for SY shows similar characteristics when compared to Mandarin and Cantonese intonation models. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185 |
url |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/185/170 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 INFOCOMP Journal of Computer Science info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 INFOCOMP Journal of Computer Science |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora da UFLA |
publisher.none.fl_str_mv |
Editora da UFLA |
dc.source.none.fl_str_mv |
INFOCOMP Journal of Computer Science; Vol. 6 No. 3 (2007): September, 2007; 47-55 1982-3363 1807-4545 reponame:INFOCOMP: Jornal de Ciência da Computação instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
INFOCOMP: Jornal de Ciência da Computação |
collection |
INFOCOMP: Jornal de Ciência da Computação |
repository.name.fl_str_mv |
INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
infocomp@dcc.ufla.br||apfreire@dcc.ufla.br |
_version_ |
1799874740449443840 |