Predictive Soil Analytics Using Data Mining Techniques

Detalhes bibliográficos
Autor(a) principal: Rubia, Dr.M.Nandhini, G.
Data de Publicação: 2021
Tipo de documento: Artigo
Idioma: eng
Título da fonte: INFOCOMP: Jornal de Ciência da Computação
Texto Completo: https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/1181
Resumo: Agriculture and allied industries play an important role in the development of our nation. In India more than 55% of people make a living from farming. Crop yields are an essential aspect of every farmer’s day. It depends on many factors like soil quality, seeds, planting practices, humidity, fertilizers and pesticides. Besides all factors, diagnosing soil quality is a fundamental and essential task in farming, as it provides background knowledge of the soil and its physical, chemical and biological prominence.  Hence, soil analytics is inevitable that gives information about the present nutrient availability or the need of the nutrients for effective cultivation. It helps to interpret the physico-chemical properties of soil nutrients and to classify the nutrient content as very low, low, medium, high, or very high based on pH values. Thus, predictive analytics based on the soil parameters offer precise and sensible solutions for soil fertility problems and enable suitable decision on crop cultivation. This study attempts to exploit the benchmark classification algorithms from data mining to classify soil samples of Tiruppur district using pH levels. The prediction of pH levels is important to know the nutrients availability in the soil. Classification algorithms like Logistic Regression (LR), Bernoulli Naïve Bayes (BNB), Decision Tree (DT), Extra Tree (ET), Random Forest (RF) and K-Nearest Neighbor (KNN) are used to evaluate and predict the pH values. After the comprehensive evaluation, this study determined that the performance of the DT and RF model for pH prediction is high compared to the other algorithms in terms of accuracy. Further, the classifiers performance has improved by possessing feature scaling techniques like normalization and standardization. Results showed that the prediction accuracy of KNN and BNB with feature scaling outperforms the other algorithms.  
id UFLA-5_668c9e1901fa839cf3b8b0d05161bf9b
oai_identifier_str oai:infocomp.dcc.ufla.br:article/1181
network_acronym_str UFLA-5
network_name_str INFOCOMP: Jornal de Ciência da Computação
repository_id_str
spelling Predictive Soil Analytics Using Data Mining TechniquesAgriculture and allied industries play an important role in the development of our nation. In India more than 55% of people make a living from farming. Crop yields are an essential aspect of every farmer’s day. It depends on many factors like soil quality, seeds, planting practices, humidity, fertilizers and pesticides. Besides all factors, diagnosing soil quality is a fundamental and essential task in farming, as it provides background knowledge of the soil and its physical, chemical and biological prominence.  Hence, soil analytics is inevitable that gives information about the present nutrient availability or the need of the nutrients for effective cultivation. It helps to interpret the physico-chemical properties of soil nutrients and to classify the nutrient content as very low, low, medium, high, or very high based on pH values. Thus, predictive analytics based on the soil parameters offer precise and sensible solutions for soil fertility problems and enable suitable decision on crop cultivation. This study attempts to exploit the benchmark classification algorithms from data mining to classify soil samples of Tiruppur district using pH levels. The prediction of pH levels is important to know the nutrients availability in the soil. Classification algorithms like Logistic Regression (LR), Bernoulli Naïve Bayes (BNB), Decision Tree (DT), Extra Tree (ET), Random Forest (RF) and K-Nearest Neighbor (KNN) are used to evaluate and predict the pH values. After the comprehensive evaluation, this study determined that the performance of the DT and RF model for pH prediction is high compared to the other algorithms in terms of accuracy. Further, the classifiers performance has improved by possessing feature scaling techniques like normalization and standardization. Results showed that the prediction accuracy of KNN and BNB with feature scaling outperforms the other algorithms.  Editora da UFLA2021-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/1181INFOCOMP Journal of Computer Science; Vol. 20 No. 1 (2021): June 20211982-33631807-4545reponame:INFOCOMP: Jornal de Ciência da Computaçãoinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/1181/557Copyright (c) 2021 G.Rubia G.Rubiainfo:eu-repo/semantics/openAccessRubia, Dr.M.Nandhini, G.2021-06-04T11:27:56Zoai:infocomp.dcc.ufla.br:article/1181Revistahttps://infocomp.dcc.ufla.br/index.php/infocompPUBhttps://infocomp.dcc.ufla.br/index.php/infocomp/oaiinfocomp@dcc.ufla.br||apfreire@dcc.ufla.br1982-33631807-4545opendoar:2024-05-21T19:54:46.352219INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv Predictive Soil Analytics Using Data Mining Techniques
title Predictive Soil Analytics Using Data Mining Techniques
spellingShingle Predictive Soil Analytics Using Data Mining Techniques
Rubia, Dr.M.Nandhini, G.
title_short Predictive Soil Analytics Using Data Mining Techniques
title_full Predictive Soil Analytics Using Data Mining Techniques
title_fullStr Predictive Soil Analytics Using Data Mining Techniques
title_full_unstemmed Predictive Soil Analytics Using Data Mining Techniques
title_sort Predictive Soil Analytics Using Data Mining Techniques
author Rubia, Dr.M.Nandhini, G.
author_facet Rubia, Dr.M.Nandhini, G.
author_role author
dc.contributor.author.fl_str_mv Rubia, Dr.M.Nandhini, G.
description Agriculture and allied industries play an important role in the development of our nation. In India more than 55% of people make a living from farming. Crop yields are an essential aspect of every farmer’s day. It depends on many factors like soil quality, seeds, planting practices, humidity, fertilizers and pesticides. Besides all factors, diagnosing soil quality is a fundamental and essential task in farming, as it provides background knowledge of the soil and its physical, chemical and biological prominence.  Hence, soil analytics is inevitable that gives information about the present nutrient availability or the need of the nutrients for effective cultivation. It helps to interpret the physico-chemical properties of soil nutrients and to classify the nutrient content as very low, low, medium, high, or very high based on pH values. Thus, predictive analytics based on the soil parameters offer precise and sensible solutions for soil fertility problems and enable suitable decision on crop cultivation. This study attempts to exploit the benchmark classification algorithms from data mining to classify soil samples of Tiruppur district using pH levels. The prediction of pH levels is important to know the nutrients availability in the soil. Classification algorithms like Logistic Regression (LR), Bernoulli Naïve Bayes (BNB), Decision Tree (DT), Extra Tree (ET), Random Forest (RF) and K-Nearest Neighbor (KNN) are used to evaluate and predict the pH values. After the comprehensive evaluation, this study determined that the performance of the DT and RF model for pH prediction is high compared to the other algorithms in terms of accuracy. Further, the classifiers performance has improved by possessing feature scaling techniques like normalization and standardization. Results showed that the prediction accuracy of KNN and BNB with feature scaling outperforms the other algorithms.  
publishDate 2021
dc.date.none.fl_str_mv 2021-06-04
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/1181
url https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/1181
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/1181/557
dc.rights.driver.fl_str_mv Copyright (c) 2021 G.Rubia G.Rubia
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 G.Rubia G.Rubia
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora da UFLA
publisher.none.fl_str_mv Editora da UFLA
dc.source.none.fl_str_mv INFOCOMP Journal of Computer Science; Vol. 20 No. 1 (2021): June 2021
1982-3363
1807-4545
reponame:INFOCOMP: Jornal de Ciência da Computação
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str INFOCOMP: Jornal de Ciência da Computação
collection INFOCOMP: Jornal de Ciência da Computação
repository.name.fl_str_mv INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv infocomp@dcc.ufla.br||apfreire@dcc.ufla.br
_version_ 1799874742650404864