A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character Recognition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | INFOCOMP: Jornal de Ciência da Computação |
Texto Completo: | https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/244 |
Resumo: | This paper proposes a hybrid genetic algorithm and support vector machine (GA-SVM) approach to address the Mongolian character recognition problem. As the character recognition problem can be considered as a multi-class classification problem, we devise a DAG-SVM classifier. DAG-SVM uses the One-Against-One technique to combine multiple binary SVM classifiers. The GA is used to select the multi-class SVM model parameters. Empirical results demonstrate that the GA-SVM approach is able to achieve good accuracy rate. |
id |
UFLA-5_84f5aca40b1f6cd4c5c708aecf8224d3 |
---|---|
oai_identifier_str |
oai:infocomp.dcc.ufla.br:article/244 |
network_acronym_str |
UFLA-5 |
network_name_str |
INFOCOMP: Jornal de Ciência da Computação |
repository_id_str |
|
spelling |
A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character RecognitionSupport vector machinesgenetic algorithmsclassificationThis paper proposes a hybrid genetic algorithm and support vector machine (GA-SVM) approach to address the Mongolian character recognition problem. As the character recognition problem can be considered as a multi-class classification problem, we devise a DAG-SVM classifier. DAG-SVM uses the One-Against-One technique to combine multiple binary SVM classifiers. The GA is used to select the multi-class SVM model parameters. Empirical results demonstrate that the GA-SVM approach is able to achieve good accuracy rate.Editora da UFLA2009-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/244INFOCOMP Journal of Computer Science; Vol. 8 No. 1 (2009): March, 2009; 1-71982-33631807-4545reponame:INFOCOMP: Jornal de Ciência da Computaçãoinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/244/229Copyright (c) 2016 INFOCOMP Journal of Computer Scienceinfo:eu-repo/semantics/openAccessBatsaikan, O.Ho, C. K.Singh, Y. P.2015-07-01T12:46:26Zoai:infocomp.dcc.ufla.br:article/244Revistahttps://infocomp.dcc.ufla.br/index.php/infocompPUBhttps://infocomp.dcc.ufla.br/index.php/infocomp/oaiinfocomp@dcc.ufla.br||apfreire@dcc.ufla.br1982-33631807-4545opendoar:2024-05-21T19:54:26.948456INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character Recognition |
title |
A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character Recognition |
spellingShingle |
A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character Recognition Batsaikan, O. Support vector machines genetic algorithms classification |
title_short |
A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character Recognition |
title_full |
A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character Recognition |
title_fullStr |
A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character Recognition |
title_full_unstemmed |
A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character Recognition |
title_sort |
A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character Recognition |
author |
Batsaikan, O. |
author_facet |
Batsaikan, O. Ho, C. K. Singh, Y. P. |
author_role |
author |
author2 |
Ho, C. K. Singh, Y. P. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Batsaikan, O. Ho, C. K. Singh, Y. P. |
dc.subject.por.fl_str_mv |
Support vector machines genetic algorithms classification |
topic |
Support vector machines genetic algorithms classification |
description |
This paper proposes a hybrid genetic algorithm and support vector machine (GA-SVM) approach to address the Mongolian character recognition problem. As the character recognition problem can be considered as a multi-class classification problem, we devise a DAG-SVM classifier. DAG-SVM uses the One-Against-One technique to combine multiple binary SVM classifiers. The GA is used to select the multi-class SVM model parameters. Empirical results demonstrate that the GA-SVM approach is able to achieve good accuracy rate. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/244 |
url |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/244 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/244/229 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 INFOCOMP Journal of Computer Science info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 INFOCOMP Journal of Computer Science |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora da UFLA |
publisher.none.fl_str_mv |
Editora da UFLA |
dc.source.none.fl_str_mv |
INFOCOMP Journal of Computer Science; Vol. 8 No. 1 (2009): March, 2009; 1-7 1982-3363 1807-4545 reponame:INFOCOMP: Jornal de Ciência da Computação instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
INFOCOMP: Jornal de Ciência da Computação |
collection |
INFOCOMP: Jornal de Ciência da Computação |
repository.name.fl_str_mv |
INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
infocomp@dcc.ufla.br||apfreire@dcc.ufla.br |
_version_ |
1799874740857339904 |