Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions

Detalhes bibliográficos
Autor(a) principal: Faraoun, K. M.
Data de Publicação: 2006
Outros Autores: Boukelif, A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: INFOCOMP: Jornal de Ciência da Computação
Texto Completo: https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140
Resumo: In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a backpropagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset..
id UFLA-5_edfacdb96d212c14fe7f46316521b302
oai_identifier_str oai:infocomp.dcc.ufla.br:article/140
network_acronym_str UFLA-5
network_name_str INFOCOMP: Jornal de Ciência da Computação
repository_id_str
spelling Neural networks learning improvement using the K-means clustering algorithm to detect network intrusionsNeural networksIntrusion detectionlearning enhancementK-means clusteringIn the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a backpropagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset..Editora da UFLA2006-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140INFOCOMP Journal of Computer Science; Vol. 5 No. 3 (2006): September, 2006; 28-361982-33631807-4545reponame:INFOCOMP: Jornal de Ciência da Computaçãoinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140/125Copyright (c) 2016 INFOCOMP Journal of Computer Scienceinfo:eu-repo/semantics/openAccessFaraoun, K. M.Boukelif, A.2015-06-25T23:15:10Zoai:infocomp.dcc.ufla.br:article/140Revistahttps://infocomp.dcc.ufla.br/index.php/infocompPUBhttps://infocomp.dcc.ufla.br/index.php/infocomp/oaiinfocomp@dcc.ufla.br||apfreire@dcc.ufla.br1982-33631807-4545opendoar:2024-05-21T19:54:19.835639INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
title Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
spellingShingle Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
Faraoun, K. M.
Neural networks
Intrusion detection
learning enhancement
K-means clustering
title_short Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
title_full Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
title_fullStr Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
title_full_unstemmed Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
title_sort Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
author Faraoun, K. M.
author_facet Faraoun, K. M.
Boukelif, A.
author_role author
author2 Boukelif, A.
author2_role author
dc.contributor.author.fl_str_mv Faraoun, K. M.
Boukelif, A.
dc.subject.por.fl_str_mv Neural networks
Intrusion detection
learning enhancement
K-means clustering
topic Neural networks
Intrusion detection
learning enhancement
K-means clustering
description In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a backpropagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset..
publishDate 2006
dc.date.none.fl_str_mv 2006-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140
url https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140/125
dc.rights.driver.fl_str_mv Copyright (c) 2016 INFOCOMP Journal of Computer Science
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 INFOCOMP Journal of Computer Science
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora da UFLA
publisher.none.fl_str_mv Editora da UFLA
dc.source.none.fl_str_mv INFOCOMP Journal of Computer Science; Vol. 5 No. 3 (2006): September, 2006; 28-36
1982-3363
1807-4545
reponame:INFOCOMP: Jornal de Ciência da Computação
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str INFOCOMP: Jornal de Ciência da Computação
collection INFOCOMP: Jornal de Ciência da Computação
repository.name.fl_str_mv INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv infocomp@dcc.ufla.br||apfreire@dcc.ufla.br
_version_ 1799874740388626432