Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | INFOCOMP: Jornal de Ciência da Computação |
Texto Completo: | https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140 |
Resumo: | In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a backpropagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset.. |
id |
UFLA-5_edfacdb96d212c14fe7f46316521b302 |
---|---|
oai_identifier_str |
oai:infocomp.dcc.ufla.br:article/140 |
network_acronym_str |
UFLA-5 |
network_name_str |
INFOCOMP: Jornal de Ciência da Computação |
repository_id_str |
|
spelling |
Neural networks learning improvement using the K-means clustering algorithm to detect network intrusionsNeural networksIntrusion detectionlearning enhancementK-means clusteringIn the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a backpropagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset..Editora da UFLA2006-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140INFOCOMP Journal of Computer Science; Vol. 5 No. 3 (2006): September, 2006; 28-361982-33631807-4545reponame:INFOCOMP: Jornal de Ciência da Computaçãoinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140/125Copyright (c) 2016 INFOCOMP Journal of Computer Scienceinfo:eu-repo/semantics/openAccessFaraoun, K. M.Boukelif, A.2015-06-25T23:15:10Zoai:infocomp.dcc.ufla.br:article/140Revistahttps://infocomp.dcc.ufla.br/index.php/infocompPUBhttps://infocomp.dcc.ufla.br/index.php/infocomp/oaiinfocomp@dcc.ufla.br||apfreire@dcc.ufla.br1982-33631807-4545opendoar:2024-05-21T19:54:19.835639INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions |
title |
Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions |
spellingShingle |
Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions Faraoun, K. M. Neural networks Intrusion detection learning enhancement K-means clustering |
title_short |
Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions |
title_full |
Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions |
title_fullStr |
Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions |
title_full_unstemmed |
Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions |
title_sort |
Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions |
author |
Faraoun, K. M. |
author_facet |
Faraoun, K. M. Boukelif, A. |
author_role |
author |
author2 |
Boukelif, A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Faraoun, K. M. Boukelif, A. |
dc.subject.por.fl_str_mv |
Neural networks Intrusion detection learning enhancement K-means clustering |
topic |
Neural networks Intrusion detection learning enhancement K-means clustering |
description |
In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a backpropagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset.. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140 |
url |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/140/125 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 INFOCOMP Journal of Computer Science info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 INFOCOMP Journal of Computer Science |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora da UFLA |
publisher.none.fl_str_mv |
Editora da UFLA |
dc.source.none.fl_str_mv |
INFOCOMP Journal of Computer Science; Vol. 5 No. 3 (2006): September, 2006; 28-36 1982-3363 1807-4545 reponame:INFOCOMP: Jornal de Ciência da Computação instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
INFOCOMP: Jornal de Ciência da Computação |
collection |
INFOCOMP: Jornal de Ciência da Computação |
repository.name.fl_str_mv |
INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
infocomp@dcc.ufla.br||apfreire@dcc.ufla.br |
_version_ |
1799874740388626432 |