Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona

Detalhes bibliográficos
Autor(a) principal: Gomes, Ana Catarina Damasceno
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/28346
Resumo: In the scope of researches for new materials for food packaging, chitosan (CHI) is known for forming translucent films. However, it presents restricted mechanical resistance, which limits its use as material for the application in food packaging. To overcome this limitation, the use of chitosan with other polymers for forming biodegradable polymeric blends can be a solution that meets sustainability tendencies. In this sense, polycaprolactone (PCL), a biodegradable polyester with mechanical and kinetic degradation properties, suitable for environmental disposal and relatively cheap production process when compared to other aliphatic polyesters, emerges with great use potential. The objective of this work was to develop polymeric blends based on chitosan and polycaprolactone, added with Tween 80 to 18% (wt/wt) in relation to total polymer mass as coupling agent. The concentrations of CHI and PCL were varied, with the proportions of CHI higher than those of PCL, limiting this last to up to 10% (wt/wt) in relation to the polymer mass, due to its higher cost (in relation to chitosan) and the separation of phases in increased concentrations. The production process was casting, and the blends where characterized regarding morphological (Scanning Electron Microscopy - SEM), mechanical (tensile strength and puncture), optic (color and opacity), water resistance (solubility), water vapor permeability (WVP), structural (X-ray diffraction - XRD and Fourier Transform Infrared Spectroscopy - FTIR) and thermal (Thermogravimetric analysis - TGA and Differential Scanning Calorimetry - DSC) properties. During micrographic analysis, the blend revealed structures in the format of microspheres derived from the PCL in the continuous phase of the CHI. The interaction of the amino groups of the chitosan with the carbonyl of the PCL were evident due to the dislocation to greater wave lengths, related to the absorption bands in the infrared region, which can be attributed to the formation of hydrogen bonds. For the tensile strength mechanical properties, the addition of PCL increased ductility and left the film less rigid in relation to the films made of pure CHI, making them more resilient, that is, capable of absorbing energy within an elastic limit. The quantity of PCL used in the blends was insufficient to change the WVP. Regarding the calorimetric analyses, the samples presented yellow shades derived from the CHI. The presence of PCL increased opacity of the samples when compared to the CHI film, due to the formation of a crystalline phase, observed in XRD analysis. Thus, the formation of crystals increased light reflection. The blends presented higher flexibility and lower water solubility with the reduction of up to 36% and 26% for the Young modulus and solubility, respectively. According to the results, the blends can be applied as an alternative to commercial non-biodegradable polymers, such as Low Density Polyethylene (LDPE), in the application of food packaging for dehydrated products.
id UFLA_00036fc7c667fe2277aae2d3e4de1072
oai_identifier_str oai:localhost:1/28346
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactonaDevelopment and characterization of chitosan and polycaprolactone biodegradable polymeric blendsAlimentos – EmbalagensPolímeros biodegradáveisBiopolímeroQuitosanaPolicaprolactonaFood – PackagingBiopolymerBiodegradable polymersChitosanPolycaprolactoneEmbalagens de Produtos AlimentaresIn the scope of researches for new materials for food packaging, chitosan (CHI) is known for forming translucent films. However, it presents restricted mechanical resistance, which limits its use as material for the application in food packaging. To overcome this limitation, the use of chitosan with other polymers for forming biodegradable polymeric blends can be a solution that meets sustainability tendencies. In this sense, polycaprolactone (PCL), a biodegradable polyester with mechanical and kinetic degradation properties, suitable for environmental disposal and relatively cheap production process when compared to other aliphatic polyesters, emerges with great use potential. The objective of this work was to develop polymeric blends based on chitosan and polycaprolactone, added with Tween 80 to 18% (wt/wt) in relation to total polymer mass as coupling agent. The concentrations of CHI and PCL were varied, with the proportions of CHI higher than those of PCL, limiting this last to up to 10% (wt/wt) in relation to the polymer mass, due to its higher cost (in relation to chitosan) and the separation of phases in increased concentrations. The production process was casting, and the blends where characterized regarding morphological (Scanning Electron Microscopy - SEM), mechanical (tensile strength and puncture), optic (color and opacity), water resistance (solubility), water vapor permeability (WVP), structural (X-ray diffraction - XRD and Fourier Transform Infrared Spectroscopy - FTIR) and thermal (Thermogravimetric analysis - TGA and Differential Scanning Calorimetry - DSC) properties. During micrographic analysis, the blend revealed structures in the format of microspheres derived from the PCL in the continuous phase of the CHI. The interaction of the amino groups of the chitosan with the carbonyl of the PCL were evident due to the dislocation to greater wave lengths, related to the absorption bands in the infrared region, which can be attributed to the formation of hydrogen bonds. For the tensile strength mechanical properties, the addition of PCL increased ductility and left the film less rigid in relation to the films made of pure CHI, making them more resilient, that is, capable of absorbing energy within an elastic limit. The quantity of PCL used in the blends was insufficient to change the WVP. Regarding the calorimetric analyses, the samples presented yellow shades derived from the CHI. The presence of PCL increased opacity of the samples when compared to the CHI film, due to the formation of a crystalline phase, observed in XRD analysis. Thus, the formation of crystals increased light reflection. The blends presented higher flexibility and lower water solubility with the reduction of up to 36% and 26% for the Young modulus and solubility, respectively. According to the results, the blends can be applied as an alternative to commercial non-biodegradable polymers, such as Low Density Polyethylene (LDPE), in the application of food packaging for dehydrated products.No âmbito das pesquisas por novos materiais para embalagens de alimentos, a quitosana (QUI) é conhecida por formar filmes translúcidos, entretanto, apresenta propriedades a tração restritas, o que limita seu uso como material para aplicação em embalagens de alimentos. Para superar essa limitação, a utilização de quitosana com outros polímeros para a formação de blendas poliméricas biodegradáveis, pode ser uma solução que atenda à tendência de sustentabilidade. Nesse sentido, a Policaprolactona (PCL), um poliéster biodegradável, com propriedades mecânicas e cinética de degradação adequadas quando descartadas no meio ambiente, com rotas de produção relativamente baratas em relação a outros poliésteres alifáticos, surge com um grande potencial de utilização. Objetivou-se, neste trabalho, desenvolver blendas poliméricas a partir da quitosana e policaprolactona, adicionando Tween 80 a 18% (p/p) em relação a massa total de polímeros como compatibilizante. As concentrações de QUI e PCL foram variadas, sendo que as proporções de QUI foram maiores e PCL foram menores, limitando esta última a até 10% (p/p) em relação à massa dos polímeros, em razão do maior custo do PCL (em relação à quitosana) e a separação de fases em concentrações maiores. O processo de produção foi o casting, e as blendas foram caracterizadas quanto às propriedades morfológicas (Microscopia Eletrônica de Varredura- MEV), mecânicas (tração e punctura), ópticas (cor e opacidade), resistência a água (solubilidade), permeabilidade ao vapor de água, estruturais (Difração de Raio X - DRX e Espectroscopia na Região do Infravermelho - FTIR) e térmicas (Análise Termogravimétrica -TGA e Calorimetria Diferencial de Varredura - DSC). Na análise micrográfica, as blendas revelaram estruturas no formato de microesferas oriundas da PCL na fase continua de QUI. A interação dos grupos amino da quitosana com a carbonila da PCL, ficaram evidentes, em decorrência do deslocamento para maiores comprimentos de ondas, referentes às bandas de absorção na região do infravermelho, podendo ser atribuídas à formação de ligações de hidrogênio. Nas propriedades mecânicas de tração, a adição da PCL aumentou a ductilidade e deixou o filme menos rígido em relação aos filmes puros de QUI, tornando-os filmes mais resilientes, ou seja, capazes de absorver energia dentro de um limite elástico. A quantidade usada de PCL nas blendas não foi suficiente para alterar PVA. Quanto às análises colorimétricas, as amostras apresentaram tons amarelos provenientes da QUI. A presença de PCL aumentou a opacidade das amostras em relação ao filme de QUI, em razão da formação de uma fase cristalina, observada em análise de DRX, assim, a formação de cristais aumentou a reflexão da luz. As blendas apresentaram maior flexibilidade e menor solubilidade em água com redução de até 36 % e 26 % para módulo de Young e solubilidade, respectivamente. Diante dos resultados, as blendas podem ser aplicadas como alternativas de polímeros comerciais não biodegradáveis, como, por exemplo, o Polietileno de Baixa Densidade (PEBD), na aplicação de embalagens de alimentos para produtos desidratados.Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia de BiomateriaisUFLAbrasilDepartamento de Ciências FlorestaisDias, Marali VilelaOliveira, Juliano Elvis deGuimarães Junior, MarioSena Neto, Alfredo Rodrigues deGomes, Ana Catarina Damasceno2018-01-05T11:24:21Z2018-01-05T11:24:21Z2018-01-052017-09-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfGOMES, A. C. D. Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona. 2018. 56 p. Dissertação (Mestrado em Engenharia de Biomateriais)-Universidade Federal de Lavras, Lavras, 2017.http://repositorio.ufla.br/jspui/handle/1/28346porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-04-25T13:52:06Zoai:localhost:1/28346Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-04-25T13:52:06Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona
Development and characterization of chitosan and polycaprolactone biodegradable polymeric blends
title Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona
spellingShingle Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona
Gomes, Ana Catarina Damasceno
Alimentos – Embalagens
Polímeros biodegradáveis
Biopolímero
Quitosana
Policaprolactona
Food – Packaging
Biopolymer
Biodegradable polymers
Chitosan
Polycaprolactone
Embalagens de Produtos Alimentares
title_short Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona
title_full Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona
title_fullStr Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona
title_full_unstemmed Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona
title_sort Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona
author Gomes, Ana Catarina Damasceno
author_facet Gomes, Ana Catarina Damasceno
author_role author
dc.contributor.none.fl_str_mv Dias, Marali Vilela
Oliveira, Juliano Elvis de
Guimarães Junior, Mario
Sena Neto, Alfredo Rodrigues de
dc.contributor.author.fl_str_mv Gomes, Ana Catarina Damasceno
dc.subject.por.fl_str_mv Alimentos – Embalagens
Polímeros biodegradáveis
Biopolímero
Quitosana
Policaprolactona
Food – Packaging
Biopolymer
Biodegradable polymers
Chitosan
Polycaprolactone
Embalagens de Produtos Alimentares
topic Alimentos – Embalagens
Polímeros biodegradáveis
Biopolímero
Quitosana
Policaprolactona
Food – Packaging
Biopolymer
Biodegradable polymers
Chitosan
Polycaprolactone
Embalagens de Produtos Alimentares
description In the scope of researches for new materials for food packaging, chitosan (CHI) is known for forming translucent films. However, it presents restricted mechanical resistance, which limits its use as material for the application in food packaging. To overcome this limitation, the use of chitosan with other polymers for forming biodegradable polymeric blends can be a solution that meets sustainability tendencies. In this sense, polycaprolactone (PCL), a biodegradable polyester with mechanical and kinetic degradation properties, suitable for environmental disposal and relatively cheap production process when compared to other aliphatic polyesters, emerges with great use potential. The objective of this work was to develop polymeric blends based on chitosan and polycaprolactone, added with Tween 80 to 18% (wt/wt) in relation to total polymer mass as coupling agent. The concentrations of CHI and PCL were varied, with the proportions of CHI higher than those of PCL, limiting this last to up to 10% (wt/wt) in relation to the polymer mass, due to its higher cost (in relation to chitosan) and the separation of phases in increased concentrations. The production process was casting, and the blends where characterized regarding morphological (Scanning Electron Microscopy - SEM), mechanical (tensile strength and puncture), optic (color and opacity), water resistance (solubility), water vapor permeability (WVP), structural (X-ray diffraction - XRD and Fourier Transform Infrared Spectroscopy - FTIR) and thermal (Thermogravimetric analysis - TGA and Differential Scanning Calorimetry - DSC) properties. During micrographic analysis, the blend revealed structures in the format of microspheres derived from the PCL in the continuous phase of the CHI. The interaction of the amino groups of the chitosan with the carbonyl of the PCL were evident due to the dislocation to greater wave lengths, related to the absorption bands in the infrared region, which can be attributed to the formation of hydrogen bonds. For the tensile strength mechanical properties, the addition of PCL increased ductility and left the film less rigid in relation to the films made of pure CHI, making them more resilient, that is, capable of absorbing energy within an elastic limit. The quantity of PCL used in the blends was insufficient to change the WVP. Regarding the calorimetric analyses, the samples presented yellow shades derived from the CHI. The presence of PCL increased opacity of the samples when compared to the CHI film, due to the formation of a crystalline phase, observed in XRD analysis. Thus, the formation of crystals increased light reflection. The blends presented higher flexibility and lower water solubility with the reduction of up to 36% and 26% for the Young modulus and solubility, respectively. According to the results, the blends can be applied as an alternative to commercial non-biodegradable polymers, such as Low Density Polyethylene (LDPE), in the application of food packaging for dehydrated products.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-13
2018-01-05T11:24:21Z
2018-01-05T11:24:21Z
2018-01-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv GOMES, A. C. D. Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona. 2018. 56 p. Dissertação (Mestrado em Engenharia de Biomateriais)-Universidade Federal de Lavras, Lavras, 2017.
http://repositorio.ufla.br/jspui/handle/1/28346
identifier_str_mv GOMES, A. C. D. Desenvolvimento e caracterização de blendas poliméricas biodegradáveis de quitosana e policaprolactona. 2018. 56 p. Dissertação (Mestrado em Engenharia de Biomateriais)-Universidade Federal de Lavras, Lavras, 2017.
url http://repositorio.ufla.br/jspui/handle/1/28346
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia de Biomateriais
UFLA
brasil
Departamento de Ciências Florestais
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia de Biomateriais
UFLA
brasil
Departamento de Ciências Florestais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1807835134893752320