Drought tolerance of sugarcane propagules is improved when origin material faces water deficit
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/33816 |
Resumo: | Drought stress can imprint marks in plants after a previous exposure, leading to plant acclimation and a permissive state that facilitates a more effective response to subsequent stress events. Such stress imprints would benefit plants obtained through vegetative propagation (propagules). Herein, our hypothesis was that the propagules obtained from plants previously exposed to water deficit would perform better under water deficit as compared to those obtained from plants that did not face stressful conditions. Sugarcane plants were grown under well-hydrated conditions or subjected to three cycles of water deficit by water withholding. Then, the propagules were subjected to water deficit. Leaf gas exchange was reduced under water deficit and the propagules from plants that experienced water deficit presented a faster recovery of CO2 assimilation and higher instantaneous carboxylation efficiency after rehydration as compared to the propagules from plants that never faced water deficit. The propagules from plants that faced water deficit also showed the highest leaf proline concentration under water deficit as well as higher leaf H2O2 concentration and leaf ascorbate peroxidase activity regardless of water regime. Under well-watered conditions, the propagules from plants that faced stressful conditions presented higher root H2O2 concentration and higher activity of catalase in roots as compared to the ones from plants that did not experience water shortage. Such physiological changes were associated with improvements in leaf area and shoot and root dry matter accumulation in propagules obtained from stressed plants. Our results suggest that root H2O2 concentration is a chemical signal associated with improved sugarcane performance under water deficit. Taken together, our findings bring a new perspective to the sugarcane production systems, in which plant acclimation can be explored for improving drought tolerance in rainfed areas. |
id |
UFLA_0209f4fa0ba0d54ebc00094487eb7ba9 |
---|---|
oai_identifier_str |
oai:localhost:1/33816 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Drought tolerance of sugarcane propagules is improved when origin material faces water deficitDrought stress can imprint marks in plants after a previous exposure, leading to plant acclimation and a permissive state that facilitates a more effective response to subsequent stress events. Such stress imprints would benefit plants obtained through vegetative propagation (propagules). Herein, our hypothesis was that the propagules obtained from plants previously exposed to water deficit would perform better under water deficit as compared to those obtained from plants that did not face stressful conditions. Sugarcane plants were grown under well-hydrated conditions or subjected to three cycles of water deficit by water withholding. Then, the propagules were subjected to water deficit. Leaf gas exchange was reduced under water deficit and the propagules from plants that experienced water deficit presented a faster recovery of CO2 assimilation and higher instantaneous carboxylation efficiency after rehydration as compared to the propagules from plants that never faced water deficit. The propagules from plants that faced water deficit also showed the highest leaf proline concentration under water deficit as well as higher leaf H2O2 concentration and leaf ascorbate peroxidase activity regardless of water regime. Under well-watered conditions, the propagules from plants that faced stressful conditions presented higher root H2O2 concentration and higher activity of catalase in roots as compared to the ones from plants that did not experience water shortage. Such physiological changes were associated with improvements in leaf area and shoot and root dry matter accumulation in propagules obtained from stressed plants. Our results suggest that root H2O2 concentration is a chemical signal associated with improved sugarcane performance under water deficit. Taken together, our findings bring a new perspective to the sugarcane production systems, in which plant acclimation can be explored for improving drought tolerance in rainfed areas.PLOS2019-04-24T18:08:42Z2019-04-24T18:08:42Z2018-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMARCOS, F. C. C. et al. Drought tolerance of sugarcane propagules is improved when origin material faces water deficit. PLoS One, [S.l.], v. 13, n. 12, p. 1-19, Dec. 2018. DOI: 10.1371/journal.pone.0206716.http://repositorio.ufla.br/jspui/handle/1/33816PLoS Onereponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessMarcos, Fernanda C. C.Silveira, Neidiquele M.Marchiori, Paulo E. R.Machado, Eduardo C.Souza, Gustavo M.Landell, Marcos G. A.Ribeiro, Rafael V.eng2019-04-24T18:08:42Zoai:localhost:1/33816Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2019-04-24T18:08:42Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Drought tolerance of sugarcane propagules is improved when origin material faces water deficit |
title |
Drought tolerance of sugarcane propagules is improved when origin material faces water deficit |
spellingShingle |
Drought tolerance of sugarcane propagules is improved when origin material faces water deficit Marcos, Fernanda C. C. |
title_short |
Drought tolerance of sugarcane propagules is improved when origin material faces water deficit |
title_full |
Drought tolerance of sugarcane propagules is improved when origin material faces water deficit |
title_fullStr |
Drought tolerance of sugarcane propagules is improved when origin material faces water deficit |
title_full_unstemmed |
Drought tolerance of sugarcane propagules is improved when origin material faces water deficit |
title_sort |
Drought tolerance of sugarcane propagules is improved when origin material faces water deficit |
author |
Marcos, Fernanda C. C. |
author_facet |
Marcos, Fernanda C. C. Silveira, Neidiquele M. Marchiori, Paulo E. R. Machado, Eduardo C. Souza, Gustavo M. Landell, Marcos G. A. Ribeiro, Rafael V. |
author_role |
author |
author2 |
Silveira, Neidiquele M. Marchiori, Paulo E. R. Machado, Eduardo C. Souza, Gustavo M. Landell, Marcos G. A. Ribeiro, Rafael V. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Marcos, Fernanda C. C. Silveira, Neidiquele M. Marchiori, Paulo E. R. Machado, Eduardo C. Souza, Gustavo M. Landell, Marcos G. A. Ribeiro, Rafael V. |
description |
Drought stress can imprint marks in plants after a previous exposure, leading to plant acclimation and a permissive state that facilitates a more effective response to subsequent stress events. Such stress imprints would benefit plants obtained through vegetative propagation (propagules). Herein, our hypothesis was that the propagules obtained from plants previously exposed to water deficit would perform better under water deficit as compared to those obtained from plants that did not face stressful conditions. Sugarcane plants were grown under well-hydrated conditions or subjected to three cycles of water deficit by water withholding. Then, the propagules were subjected to water deficit. Leaf gas exchange was reduced under water deficit and the propagules from plants that experienced water deficit presented a faster recovery of CO2 assimilation and higher instantaneous carboxylation efficiency after rehydration as compared to the propagules from plants that never faced water deficit. The propagules from plants that faced water deficit also showed the highest leaf proline concentration under water deficit as well as higher leaf H2O2 concentration and leaf ascorbate peroxidase activity regardless of water regime. Under well-watered conditions, the propagules from plants that faced stressful conditions presented higher root H2O2 concentration and higher activity of catalase in roots as compared to the ones from plants that did not experience water shortage. Such physiological changes were associated with improvements in leaf area and shoot and root dry matter accumulation in propagules obtained from stressed plants. Our results suggest that root H2O2 concentration is a chemical signal associated with improved sugarcane performance under water deficit. Taken together, our findings bring a new perspective to the sugarcane production systems, in which plant acclimation can be explored for improving drought tolerance in rainfed areas. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 2019-04-24T18:08:42Z 2019-04-24T18:08:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MARCOS, F. C. C. et al. Drought tolerance of sugarcane propagules is improved when origin material faces water deficit. PLoS One, [S.l.], v. 13, n. 12, p. 1-19, Dec. 2018. DOI: 10.1371/journal.pone.0206716. http://repositorio.ufla.br/jspui/handle/1/33816 |
identifier_str_mv |
MARCOS, F. C. C. et al. Drought tolerance of sugarcane propagules is improved when origin material faces water deficit. PLoS One, [S.l.], v. 13, n. 12, p. 1-19, Dec. 2018. DOI: 10.1371/journal.pone.0206716. |
url |
http://repositorio.ufla.br/jspui/handle/1/33816 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
PLOS |
publisher.none.fl_str_mv |
PLOS |
dc.source.none.fl_str_mv |
PLoS One reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439011010838528 |