Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study

Detalhes bibliográficos
Autor(a) principal: Rossoni, Diogo Francisco
Data de Publicação: 2019
Outros Autores: Lima, Renato Ribeiro de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/40893
Resumo: The analysis of variance remains one of the most appreciated techniques of field experiment, even despite almost a hundred years of its first proposal. However, in many cases, its application can be several impaired due the fact of lack –or even forgotten -of assumptions. In several experiments, the researchers make use of blocks to control the local heterogeneity, nevertheless, in some cases, only thisitcannot be enough, especially in experiments where the data have some kind of spatial dependence. Therefore, to increase the accuracy of comparisons between treatments, an alternative is to consider the study of the spatial dependence of the variables in the analysis. With the knowledge of the relative positions of the plots (referenced data), the spatial variability canbe used as a positive factor, collaborating with the experimental results. To develop this study we used data generated by simulation. The data was generated according a Randomized Complete Block Design (RCBD), with eighteen and five treatments per block;and several scenarios of spatial dependence in the error. We compared the non-spatial analysis (which considers the errors independent) with spatial analysis (analysis of variance considering the autoregressive model -ANOVA-AR). The use of spatial statistical tools in the analysis of data increased the precision of the analysis, through the reduction of the Mean Squared Error. We also noticed a reduction of Mean Squared Block and Mean Squared Treatment. The greater reduction was notice in ANOVA-AR3 for great part of the simulated scenarios, mainly in those with strong spatial dependence. The experiments with a small number of treatments per block did not present a reduction of Mean Squared Error, however, the reduction of Mean Squared Block and Mean Squared Treatment, ally to the fact that data are spatial dependent justify the use of ANOVA-AR.
id UFLA_0b3b512a9b19f6ab471d85a96238de26
oai_identifier_str oai:localhost:1/40893
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation studyAnálise de variância autoregressiva para experimentos com dependência espacial entre parcelas: um estudo de simulaçãoAutoregressive modelGeostatisticANOVA-ARModelo autoregressivoGeoestatísticaThe analysis of variance remains one of the most appreciated techniques of field experiment, even despite almost a hundred years of its first proposal. However, in many cases, its application can be several impaired due the fact of lack –or even forgotten -of assumptions. In several experiments, the researchers make use of blocks to control the local heterogeneity, nevertheless, in some cases, only thisitcannot be enough, especially in experiments where the data have some kind of spatial dependence. Therefore, to increase the accuracy of comparisons between treatments, an alternative is to consider the study of the spatial dependence of the variables in the analysis. With the knowledge of the relative positions of the plots (referenced data), the spatial variability canbe used as a positive factor, collaborating with the experimental results. To develop this study we used data generated by simulation. The data was generated according a Randomized Complete Block Design (RCBD), with eighteen and five treatments per block;and several scenarios of spatial dependence in the error. We compared the non-spatial analysis (which considers the errors independent) with spatial analysis (analysis of variance considering the autoregressive model -ANOVA-AR). The use of spatial statistical tools in the analysis of data increased the precision of the analysis, through the reduction of the Mean Squared Error. We also noticed a reduction of Mean Squared Block and Mean Squared Treatment. The greater reduction was notice in ANOVA-AR3 for great part of the simulated scenarios, mainly in those with strong spatial dependence. The experiments with a small number of treatments per block did not present a reduction of Mean Squared Error, however, the reduction of Mean Squared Block and Mean Squared Treatment, ally to the fact that data are spatial dependent justify the use of ANOVA-AR.A análise de variância continua sendo uma das técnicas mais apreciadas na experimentação de campo, mesmo apósquase cem anos de sua primeira proposta. No entanto, em muitos casos, sua aplicação pode ser prejudicada devido àfalta -ou mesmo do esquecimento –dos pressupostos. Em vários experimentos, os pesquisadores fazem uso de blocos para controlar a heterogeneidade local, no entanto, em alguns casos, apenas isso pode ser insuficiente, Rev. Bras. Biom., Lavras, v.37, n.2, p.244-257, 2019 -doi: 10.28951/rbb.v37i2.388255especialmente em experimentos onde os dados possuem algum tipo de dependência espacial. Assim, para aumentar a precisão das comparações entre tratamentos, uma alternativa é considerarna análise o estudo da dependência espacial das variáveis. Com o conhecimento das posições relativas das parcelas (dados referenciados), a variabilidade espacial pode ser utilizada como um fator positivo, colaborando com os resultados experimentais. Para desenvolver este estudo, foram usados dados gerados por simulação. Os dados foram gerados segundo um delineamento de blocos casualizados (DBC), com dezoito e cinco tratamentos por bloco; e vários cenários de dependência espacial no erro. Comparamos a análise não espacial (que considera os erros independentes) com a análise espacial (análise de variância considerando o modelo autoregressivo -ANOVA-AR). O uso de ferramentas estatísticas espaciais na análise de dados aumentou a precisão da análise, através da redução do Quadrado Médio do Erro. Observamos também uma redução do Quadrado Médio do Blocoe do Quadrado Médio do Tratamento. A maior redução foi observada na ANOVA-AR3 na maiorparte dos cenários simulados, principalmente naqueles com forte dependência espacial. Os experimentos com um pequeno número de tratamentos por bloco não apresentaram redução do Quadrado Médio do Erro, no entanto, a redução do Quadrado Médio do Bloco e do Quadrado Médio do Tratamento, aliado ao fato dos dados possuírem dependência espacial, justificaramo uso da ANOVA-AR.Universidade Federal de Lavras2020-05-13T19:36:28Z2020-05-13T19:36:28Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfROSSONI, D. F.; LIMA, R. R. de. Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study. Revista Brasileira de Biometria, Lavras, v. 37, n. 2, 2019.http://repositorio.ufla.br/jspui/handle/1/40893Revista Brasileira de Biometriareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessRossoni, Diogo FranciscoLima, Renato Ribeiro deeng2023-05-26T19:37:15Zoai:localhost:1/40893Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-26T19:37:15Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study
Análise de variância autoregressiva para experimentos com dependência espacial entre parcelas: um estudo de simulação
title Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study
spellingShingle Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study
Rossoni, Diogo Francisco
Autoregressive model
Geostatistic
ANOVA-AR
Modelo autoregressivo
Geoestatística
title_short Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study
title_full Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study
title_fullStr Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study
title_full_unstemmed Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study
title_sort Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study
author Rossoni, Diogo Francisco
author_facet Rossoni, Diogo Francisco
Lima, Renato Ribeiro de
author_role author
author2 Lima, Renato Ribeiro de
author2_role author
dc.contributor.author.fl_str_mv Rossoni, Diogo Francisco
Lima, Renato Ribeiro de
dc.subject.por.fl_str_mv Autoregressive model
Geostatistic
ANOVA-AR
Modelo autoregressivo
Geoestatística
topic Autoregressive model
Geostatistic
ANOVA-AR
Modelo autoregressivo
Geoestatística
description The analysis of variance remains one of the most appreciated techniques of field experiment, even despite almost a hundred years of its first proposal. However, in many cases, its application can be several impaired due the fact of lack –or even forgotten -of assumptions. In several experiments, the researchers make use of blocks to control the local heterogeneity, nevertheless, in some cases, only thisitcannot be enough, especially in experiments where the data have some kind of spatial dependence. Therefore, to increase the accuracy of comparisons between treatments, an alternative is to consider the study of the spatial dependence of the variables in the analysis. With the knowledge of the relative positions of the plots (referenced data), the spatial variability canbe used as a positive factor, collaborating with the experimental results. To develop this study we used data generated by simulation. The data was generated according a Randomized Complete Block Design (RCBD), with eighteen and five treatments per block;and several scenarios of spatial dependence in the error. We compared the non-spatial analysis (which considers the errors independent) with spatial analysis (analysis of variance considering the autoregressive model -ANOVA-AR). The use of spatial statistical tools in the analysis of data increased the precision of the analysis, through the reduction of the Mean Squared Error. We also noticed a reduction of Mean Squared Block and Mean Squared Treatment. The greater reduction was notice in ANOVA-AR3 for great part of the simulated scenarios, mainly in those with strong spatial dependence. The experiments with a small number of treatments per block did not present a reduction of Mean Squared Error, however, the reduction of Mean Squared Block and Mean Squared Treatment, ally to the fact that data are spatial dependent justify the use of ANOVA-AR.
publishDate 2019
dc.date.none.fl_str_mv 2019
2020-05-13T19:36:28Z
2020-05-13T19:36:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv ROSSONI, D. F.; LIMA, R. R. de. Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study. Revista Brasileira de Biometria, Lavras, v. 37, n. 2, 2019.
http://repositorio.ufla.br/jspui/handle/1/40893
identifier_str_mv ROSSONI, D. F.; LIMA, R. R. de. Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study. Revista Brasileira de Biometria, Lavras, v. 37, n. 2, 2019.
url http://repositorio.ufla.br/jspui/handle/1/40893
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
publisher.none.fl_str_mv Universidade Federal de Lavras
dc.source.none.fl_str_mv Revista Brasileira de Biometria
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1807835225596624896