A multi-objective MGGP grey-box identification approach to design soft sensors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/49913 |
Resumo: | Offshore oil extraction is a complex process, requiring several instruments to control the pro- duction in the wells. Among several, the Permanent Downhole Gauge (PDG) sensor, located inside the production column, is used to measure the pressure and temperature of the oil well. This sensor is subjected to extreme operating conditions, resulting in short service life. The replacement or maintenance of this sensor is rarely done as it is difficult to access and requi- res production to be stopped. Thus, aiming to overcome the production problem without PDG sensor data, the use of Soft Sensors (SSs) appears as an alternative. SS are mathematical mo- dels capable of estimating a process variable through other variables as input. In this project, it is proposed the use of the methodology of systems identification (i.e., i. Dynamic tests, data collection; ii. Choice of the mathematical representation of the model; iii. Selection of struc- tures for the model; iv. Estimation of parameters; and v. Model validation.) to model an SS in order to estimate the output of a PDG sensor but not limited to this application, which is used as motivation. In methodology step ii., the Nonlinear Autoregressive with Exogenous In- puts (NARX) polynomial representation was chosen. For step iii. a multi-objective approach is proposed, using the evolutionary algorithm Multi-Gene Genetic Programming (MGGP) to perform the task of structure selection from NARX models. Three objectives are minimized, namely: i. one-step-ahead prediction error (dynamic regime), ii. steady-state error (an appro- ach that reduces computational cost is used), and iii. the number of regressors in the model. In step iv. it is proposed to estimate the parameters through weighted least squares, which uses information from the dynamic and static regime (auxiliary information). Finally, the models found in the Pareto-optimal sets are validated (step v.) in free-run simulation (in both regimes), and a decision criterion to select the most adequate model is applied. In order to validate the proposed methodology, three experiments are carried out. The first uses a dataset of a stochastic system, in which several comparisons of approaches are made (e.g., number of objectives in the cost function). As a result, it is seen that the methodology can find the regressors and estimate the model parameters correctly, with a lower computational cost than other approaches. The second experiment applies the methodology in a hydraulic pumping system. The model found is competitive in the static and dynamic regime, in addition to being parsimonious. Finally, the same methodology is applied to the petrochemical process dataset, whose output is the PDG pressure. The proposed algorithm selects a model that has a satisfactory behavior in dynamic regime compared to other works, with twelve regressors and twelve parameters. This demons- trates that the multi-objective MGGP, using auxiliary information, is a good tool for selecting structures and estimating parameters for NARX models. |
id |
UFLA_17b18554c3857b1eb340c3ccdfec2f07 |
---|---|
oai_identifier_str |
oai:localhost:1/49913 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
A multi-objective MGGP grey-box identification approach to design soft sensorsUma abordagem de identificação caixa-cinza MGGP multi-objetiva para projeto de sensores virtuaisSoft sensorPetróleoModelos NARMAX/NARXIdentificação de sistemasMulti-Gene Genetic Programming (MGGP)OilNARMAX/NARX modelsNon-linear auto regressive moving average model with exogenous input (NARMAX)Sistemas de ComputaçãoOffshore oil extraction is a complex process, requiring several instruments to control the pro- duction in the wells. Among several, the Permanent Downhole Gauge (PDG) sensor, located inside the production column, is used to measure the pressure and temperature of the oil well. This sensor is subjected to extreme operating conditions, resulting in short service life. The replacement or maintenance of this sensor is rarely done as it is difficult to access and requi- res production to be stopped. Thus, aiming to overcome the production problem without PDG sensor data, the use of Soft Sensors (SSs) appears as an alternative. SS are mathematical mo- dels capable of estimating a process variable through other variables as input. In this project, it is proposed the use of the methodology of systems identification (i.e., i. Dynamic tests, data collection; ii. Choice of the mathematical representation of the model; iii. Selection of struc- tures for the model; iv. Estimation of parameters; and v. Model validation.) to model an SS in order to estimate the output of a PDG sensor but not limited to this application, which is used as motivation. In methodology step ii., the Nonlinear Autoregressive with Exogenous In- puts (NARX) polynomial representation was chosen. For step iii. a multi-objective approach is proposed, using the evolutionary algorithm Multi-Gene Genetic Programming (MGGP) to perform the task of structure selection from NARX models. Three objectives are minimized, namely: i. one-step-ahead prediction error (dynamic regime), ii. steady-state error (an appro- ach that reduces computational cost is used), and iii. the number of regressors in the model. In step iv. it is proposed to estimate the parameters through weighted least squares, which uses information from the dynamic and static regime (auxiliary information). Finally, the models found in the Pareto-optimal sets are validated (step v.) in free-run simulation (in both regimes), and a decision criterion to select the most adequate model is applied. In order to validate the proposed methodology, three experiments are carried out. The first uses a dataset of a stochastic system, in which several comparisons of approaches are made (e.g., number of objectives in the cost function). As a result, it is seen that the methodology can find the regressors and estimate the model parameters correctly, with a lower computational cost than other approaches. The second experiment applies the methodology in a hydraulic pumping system. The model found is competitive in the static and dynamic regime, in addition to being parsimonious. Finally, the same methodology is applied to the petrochemical process dataset, whose output is the PDG pressure. The proposed algorithm selects a model that has a satisfactory behavior in dynamic regime compared to other works, with twelve regressors and twelve parameters. This demons- trates that the multi-objective MGGP, using auxiliary information, is a good tool for selecting structures and estimating parameters for NARX models.Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)A extração offshore de petróleo é um processo complexo sendo necessários diversos instrumen- tos para controlar a produção nos poços. Dentre vários, o sensor Permanent Downhole Gauge (PDG), localizado dentro da coluna de produção, é utilizado para aferir a pressão e temperatura do poço de petróleo. Este sensor é submetido à condições extremas de operação, resultando em uma vida útil curta. A troca ou manutenção deste sensor é raramente feita pois o mesmo é de difícil acesso e exige que a produção seja paralisada. Assim, objetivando superar o problema de produção sem os dados do sensor PDG, o uso de Soft Sensors (SSs) surge como uma alter- nativa. Os SS são modelos matemáticos capazes de estimar uma variável de algum processo por meio de outras variáveis como entrada. Neste projeto é proposto o uso da metodologia de identificação de sistemas (i.e., i. Testes dinâmicos, coleta de dados; ii. Escolha da representação matemática do modelo; iii. Seleção de estruturas para o modelo; iv. Estimação de parâmetros; e v. Validação do modelo.) com o fito de modelar um SS a fim de estimar a saída de um sensor PDG, mas não se limitando a esta aplicação, a qual é utilizada como motivação. Na etapa ii. da metodologia, a representação polinomial Nonlinear Autoregressive with Exogenous Inputs (NARX) foi escolhida. Para a etapa iii. é proposta uma abordagem multi-objetiva, por meio do algoritmo evolucionário Multi-Gene Genetic Programming (MGGP), para realizar a tarefa de seleção de estruturas dos modelos NARX. Três objetivos são minimizados, sendo eles: i. erro de predição um passo à frente (regime dinâmico), ii. erro em regime estático (é utilizada uma abordagem que reduz o custo computacional), e iii. o número de regressores do modelo. Na etapa iv. é proposta a estimação de parâmetros por meio dos mínimos quadrados ponderados, que utiliza informação do regime dinâmico e estático (informação auxiliar). Por fim, os mode- los encontrados nos conjuntos Pareto-ótimos são validados (etapa v.) em simulação livre (em ambos os regimes) e um critério de decisão para selecionar o modelo mais adequado é aplicado. A fim de validar a metodologia proposta, três experimentos são feitos. O primeiro utiliza um banco de dados de um sistema estocástico, em que diversas comparações de abordagens são feitas (e.g., número de objetivos na função custo). Como resultado, é visto que a metodologia consegue encontrar os regressores e estimar os parâmetros do modelo corretamente, com um custo computacional menor que outras abordagens. Já o segundo experimento aplica a metodo- logia em um sistema de bombeamento hidráulico. O modelo encontrado se mostra competitivo em regime estático e dinâmico, além de ser parcimonioso. Enfim, a mesma metodologia é apli- cada ao banco de dados do processo petroquímico, que possui como saída a pressão do PDG. O algoritmo proposto consegue selecionar um modelo, que possui um comportamento satisfatório em regime dinâmico quando comparado com outros trabalhos, com doze regressores e doze parâmetros. Isso demonstra que o MGGP multi-objetivo, utilizando informações auxiliares, é uma boa ferramenta para seleção de estruturas e estimação de parâmetros para modelos NARX.Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia de Sistemas e AutomaçãoUFLAbrasilDepartamento de EngenhariaBarbosa, Bruno Henrique GroennerBarbosa, Bruno Henrique GroennerAbreu, Leandro Freitas deFerreira, Danton DiegoMota, Frederico Lucas de Oliveira2022-05-10T22:22:27Z2022-05-10T22:22:27Z2022-05-102022-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMOTA, F. L. de O. A multi-objective MGGP grey-box identification approach to design soft sensors. 2022. 118 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) - Universidade Federal de Lavras, Lavras, 2022.http://repositorio.ufla.br/jspui/handle/1/49913porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2022-05-10T22:22:28Zoai:localhost:1/49913Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2022-05-10T22:22:28Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
A multi-objective MGGP grey-box identification approach to design soft sensors Uma abordagem de identificação caixa-cinza MGGP multi-objetiva para projeto de sensores virtuais |
title |
A multi-objective MGGP grey-box identification approach to design soft sensors |
spellingShingle |
A multi-objective MGGP grey-box identification approach to design soft sensors Mota, Frederico Lucas de Oliveira Soft sensor Petróleo Modelos NARMAX/NARX Identificação de sistemas Multi-Gene Genetic Programming (MGGP) Oil NARMAX/NARX models Non-linear auto regressive moving average model with exogenous input (NARMAX) Sistemas de Computação |
title_short |
A multi-objective MGGP grey-box identification approach to design soft sensors |
title_full |
A multi-objective MGGP grey-box identification approach to design soft sensors |
title_fullStr |
A multi-objective MGGP grey-box identification approach to design soft sensors |
title_full_unstemmed |
A multi-objective MGGP grey-box identification approach to design soft sensors |
title_sort |
A multi-objective MGGP grey-box identification approach to design soft sensors |
author |
Mota, Frederico Lucas de Oliveira |
author_facet |
Mota, Frederico Lucas de Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barbosa, Bruno Henrique Groenner Barbosa, Bruno Henrique Groenner Abreu, Leandro Freitas de Ferreira, Danton Diego |
dc.contributor.author.fl_str_mv |
Mota, Frederico Lucas de Oliveira |
dc.subject.por.fl_str_mv |
Soft sensor Petróleo Modelos NARMAX/NARX Identificação de sistemas Multi-Gene Genetic Programming (MGGP) Oil NARMAX/NARX models Non-linear auto regressive moving average model with exogenous input (NARMAX) Sistemas de Computação |
topic |
Soft sensor Petróleo Modelos NARMAX/NARX Identificação de sistemas Multi-Gene Genetic Programming (MGGP) Oil NARMAX/NARX models Non-linear auto regressive moving average model with exogenous input (NARMAX) Sistemas de Computação |
description |
Offshore oil extraction is a complex process, requiring several instruments to control the pro- duction in the wells. Among several, the Permanent Downhole Gauge (PDG) sensor, located inside the production column, is used to measure the pressure and temperature of the oil well. This sensor is subjected to extreme operating conditions, resulting in short service life. The replacement or maintenance of this sensor is rarely done as it is difficult to access and requi- res production to be stopped. Thus, aiming to overcome the production problem without PDG sensor data, the use of Soft Sensors (SSs) appears as an alternative. SS are mathematical mo- dels capable of estimating a process variable through other variables as input. In this project, it is proposed the use of the methodology of systems identification (i.e., i. Dynamic tests, data collection; ii. Choice of the mathematical representation of the model; iii. Selection of struc- tures for the model; iv. Estimation of parameters; and v. Model validation.) to model an SS in order to estimate the output of a PDG sensor but not limited to this application, which is used as motivation. In methodology step ii., the Nonlinear Autoregressive with Exogenous In- puts (NARX) polynomial representation was chosen. For step iii. a multi-objective approach is proposed, using the evolutionary algorithm Multi-Gene Genetic Programming (MGGP) to perform the task of structure selection from NARX models. Three objectives are minimized, namely: i. one-step-ahead prediction error (dynamic regime), ii. steady-state error (an appro- ach that reduces computational cost is used), and iii. the number of regressors in the model. In step iv. it is proposed to estimate the parameters through weighted least squares, which uses information from the dynamic and static regime (auxiliary information). Finally, the models found in the Pareto-optimal sets are validated (step v.) in free-run simulation (in both regimes), and a decision criterion to select the most adequate model is applied. In order to validate the proposed methodology, three experiments are carried out. The first uses a dataset of a stochastic system, in which several comparisons of approaches are made (e.g., number of objectives in the cost function). As a result, it is seen that the methodology can find the regressors and estimate the model parameters correctly, with a lower computational cost than other approaches. The second experiment applies the methodology in a hydraulic pumping system. The model found is competitive in the static and dynamic regime, in addition to being parsimonious. Finally, the same methodology is applied to the petrochemical process dataset, whose output is the PDG pressure. The proposed algorithm selects a model that has a satisfactory behavior in dynamic regime compared to other works, with twelve regressors and twelve parameters. This demons- trates that the multi-objective MGGP, using auxiliary information, is a good tool for selecting structures and estimating parameters for NARX models. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-10T22:22:27Z 2022-05-10T22:22:27Z 2022-05-10 2022-01-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MOTA, F. L. de O. A multi-objective MGGP grey-box identification approach to design soft sensors. 2022. 118 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) - Universidade Federal de Lavras, Lavras, 2022. http://repositorio.ufla.br/jspui/handle/1/49913 |
identifier_str_mv |
MOTA, F. L. de O. A multi-objective MGGP grey-box identification approach to design soft sensors. 2022. 118 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) - Universidade Federal de Lavras, Lavras, 2022. |
url |
http://repositorio.ufla.br/jspui/handle/1/49913 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Engenharia de Sistemas e Automação UFLA brasil Departamento de Engenharia |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Engenharia de Sistemas e Automação UFLA brasil Departamento de Engenharia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1807835093974122496 |