Leaf count overdispersion in coffee seedlings

Detalhes bibliográficos
Autor(a) principal: Silva, Edilson Marcelino
Data de Publicação: 2019
Outros Autores: Furtado, Thais Destefani Ribeiro, Fernandes, Jaqueline Gonçalves, Cirillo, Marcelo Ângelo, Muniz, Joel Augusto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/40563
Resumo: Coffee crops play an important role in Brazilian agriculture, with a high level of social and economic participation resulting from the jobs created in the supply chain and from the income obtained by producers and the revenue generated for the country from coffee bean export. In coffee plant growth, leaves have a determinant role in higher production; therefore, the leaf count per plant provides relevant information to producers for adequate crop management, such as foliar fertilizer applications. To describe count data, the Poisson model is the most commonly employed model; when count data show overdispersion, the negative binomial model has been determined to be more adequate. The objective of this study was to compare the fitness of the Poisson and negative binomial models to data on the leaf count per plant in coffee seedlings. Data were collected from an experiment with a randomized block design with 30 treatments and three replicates and four plants per plot. Data from only one treatment, in which the number of leaves was counted over time, were employed. The first count was conducted on 8 April 2016, and the other counts were performed 18, 32, 47, 62, 76, 95, 116, 133, and 153 days after the first evaluation, for a total of ten measurements. The fitness of the models was assessed based on deviance values and simulated envelopes for residuals. Results of fitness assessment indicated that the Poisson model was inadequate for describing the data due to overdispersion. The negative binomial model adequately fitted the observations and was indicated to describe the number of leaves of coffee plants. Based on the negative binomial model, the expected relative increase in the number of leaves was 0.9768% per day.
id UFLA_255ce684b262e48c4b4d87123a2ba785
oai_identifier_str oai:localhost:1/40563
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Leaf count overdispersion in coffee seedlingsSuperdispersão relacionado a contagem de folhas em mudas de cafeeiroPoisson modelNegative binomial modelExponential familyGeneralized linear modelModelo PoissonModelo Binomial NegativoFamília exponencialModelo linear generalizadoCoffee crops play an important role in Brazilian agriculture, with a high level of social and economic participation resulting from the jobs created in the supply chain and from the income obtained by producers and the revenue generated for the country from coffee bean export. In coffee plant growth, leaves have a determinant role in higher production; therefore, the leaf count per plant provides relevant information to producers for adequate crop management, such as foliar fertilizer applications. To describe count data, the Poisson model is the most commonly employed model; when count data show overdispersion, the negative binomial model has been determined to be more adequate. The objective of this study was to compare the fitness of the Poisson and negative binomial models to data on the leaf count per plant in coffee seedlings. Data were collected from an experiment with a randomized block design with 30 treatments and three replicates and four plants per plot. Data from only one treatment, in which the number of leaves was counted over time, were employed. The first count was conducted on 8 April 2016, and the other counts were performed 18, 32, 47, 62, 76, 95, 116, 133, and 153 days after the first evaluation, for a total of ten measurements. The fitness of the models was assessed based on deviance values and simulated envelopes for residuals. Results of fitness assessment indicated that the Poisson model was inadequate for describing the data due to overdispersion. The negative binomial model adequately fitted the observations and was indicated to describe the number of leaves of coffee plants. Based on the negative binomial model, the expected relative increase in the number of leaves was 0.9768% per day.A cultura do café desempenha papel relevante na agricultura do Brasil, com expressiva participação social e econômica tanto pelos empregos gerados na cadeia produtiva, bem como pela renda obtida pelos produtores e pelas divisas geradas para o país na exportação do grão. No crescimento das plantas de café, as folhas desempenham papel decisivo para que tenha maior produção, portanto a contagem do número de folhas por planta fornece informações importantes aos produtores para o manejo adequado da cultura como, por exemplo, a aplicação de adubações foliares. Em geral, na descrição de dados obtidos por contagem, o modelo mais utilizado é o Poisson, sendo que quando os dados apresentam superdispersão, o modelo Binomial Negativo tem se mostrado mais adequado. O objetivo deste trabalho foi comparar o ajuste dos modelos de Poisson e Binomial Negativo em dados de contagens do número de folhas por planta em mudas do cafeeiro. Os dados foram obtidos de um experimento usando o delineamento em blocos casualizados com trinta tratamentos e três repetições com quatro plantas por parcela. Foram utilizados os dados de apenas um tratamento no qual foi feita a contagem do número de folhas ao longo do tempo. A primeira avaliação foi feita em 8 de abril de 2016 e as demais aos 18, 32, 47, 62, 76, 95, 116, 133 e 153 dias após a primeira avaliação, totalizando dez medidas. A adequação dos mesmos foi verificada com base nos valores da Deviance e no envelope simulado para os resíduos. Os resultados do ajuste indicaram que o modelo Poisson foi inadequado para descrição dos dados devido a superdispersão. O modelo Binomial Negativo se ajustou adequadamente e foi indicado para descrever o número de folhas das plantas do cafeeiro. Com base no modelo Binomial Negativo o aumento relativo esperado para o número de folhas foi de 0,9768% para cada dia.Universidade Federal de Santa Maria2020-05-05T11:32:17Z2020-05-05T11:32:17Z2019-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSILVA, E. M. et al. Leaf count overdispersion in coffee seedlings. Ciência Rural, Santa Maria, v. 49, n. 4, abr. 2019. Paginação irregular.http://repositorio.ufla.br/jspui/handle/1/40563Ciência Ruralreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSilva, Edilson MarcelinoFurtado, Thais Destefani RibeiroFernandes, Jaqueline GonçalvesCirillo, Marcelo ÂngeloMuniz, Joel Augustoeng2023-05-26T19:37:10Zoai:localhost:1/40563Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-26T19:37:10Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Leaf count overdispersion in coffee seedlings
Superdispersão relacionado a contagem de folhas em mudas de cafeeiro
title Leaf count overdispersion in coffee seedlings
spellingShingle Leaf count overdispersion in coffee seedlings
Silva, Edilson Marcelino
Poisson model
Negative binomial model
Exponential family
Generalized linear model
Modelo Poisson
Modelo Binomial Negativo
Família exponencial
Modelo linear generalizado
title_short Leaf count overdispersion in coffee seedlings
title_full Leaf count overdispersion in coffee seedlings
title_fullStr Leaf count overdispersion in coffee seedlings
title_full_unstemmed Leaf count overdispersion in coffee seedlings
title_sort Leaf count overdispersion in coffee seedlings
author Silva, Edilson Marcelino
author_facet Silva, Edilson Marcelino
Furtado, Thais Destefani Ribeiro
Fernandes, Jaqueline Gonçalves
Cirillo, Marcelo Ângelo
Muniz, Joel Augusto
author_role author
author2 Furtado, Thais Destefani Ribeiro
Fernandes, Jaqueline Gonçalves
Cirillo, Marcelo Ângelo
Muniz, Joel Augusto
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Silva, Edilson Marcelino
Furtado, Thais Destefani Ribeiro
Fernandes, Jaqueline Gonçalves
Cirillo, Marcelo Ângelo
Muniz, Joel Augusto
dc.subject.por.fl_str_mv Poisson model
Negative binomial model
Exponential family
Generalized linear model
Modelo Poisson
Modelo Binomial Negativo
Família exponencial
Modelo linear generalizado
topic Poisson model
Negative binomial model
Exponential family
Generalized linear model
Modelo Poisson
Modelo Binomial Negativo
Família exponencial
Modelo linear generalizado
description Coffee crops play an important role in Brazilian agriculture, with a high level of social and economic participation resulting from the jobs created in the supply chain and from the income obtained by producers and the revenue generated for the country from coffee bean export. In coffee plant growth, leaves have a determinant role in higher production; therefore, the leaf count per plant provides relevant information to producers for adequate crop management, such as foliar fertilizer applications. To describe count data, the Poisson model is the most commonly employed model; when count data show overdispersion, the negative binomial model has been determined to be more adequate. The objective of this study was to compare the fitness of the Poisson and negative binomial models to data on the leaf count per plant in coffee seedlings. Data were collected from an experiment with a randomized block design with 30 treatments and three replicates and four plants per plot. Data from only one treatment, in which the number of leaves was counted over time, were employed. The first count was conducted on 8 April 2016, and the other counts were performed 18, 32, 47, 62, 76, 95, 116, 133, and 153 days after the first evaluation, for a total of ten measurements. The fitness of the models was assessed based on deviance values and simulated envelopes for residuals. Results of fitness assessment indicated that the Poisson model was inadequate for describing the data due to overdispersion. The negative binomial model adequately fitted the observations and was indicated to describe the number of leaves of coffee plants. Based on the negative binomial model, the expected relative increase in the number of leaves was 0.9768% per day.
publishDate 2019
dc.date.none.fl_str_mv 2019-04
2020-05-05T11:32:17Z
2020-05-05T11:32:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, E. M. et al. Leaf count overdispersion in coffee seedlings. Ciência Rural, Santa Maria, v. 49, n. 4, abr. 2019. Paginação irregular.
http://repositorio.ufla.br/jspui/handle/1/40563
identifier_str_mv SILVA, E. M. et al. Leaf count overdispersion in coffee seedlings. Ciência Rural, Santa Maria, v. 49, n. 4, abr. 2019. Paginação irregular.
url http://repositorio.ufla.br/jspui/handle/1/40563
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência Rural
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439329323909120