Leaf count overdispersion in coffee seedlings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/40563 |
Resumo: | Coffee crops play an important role in Brazilian agriculture, with a high level of social and economic participation resulting from the jobs created in the supply chain and from the income obtained by producers and the revenue generated for the country from coffee bean export. In coffee plant growth, leaves have a determinant role in higher production; therefore, the leaf count per plant provides relevant information to producers for adequate crop management, such as foliar fertilizer applications. To describe count data, the Poisson model is the most commonly employed model; when count data show overdispersion, the negative binomial model has been determined to be more adequate. The objective of this study was to compare the fitness of the Poisson and negative binomial models to data on the leaf count per plant in coffee seedlings. Data were collected from an experiment with a randomized block design with 30 treatments and three replicates and four plants per plot. Data from only one treatment, in which the number of leaves was counted over time, were employed. The first count was conducted on 8 April 2016, and the other counts were performed 18, 32, 47, 62, 76, 95, 116, 133, and 153 days after the first evaluation, for a total of ten measurements. The fitness of the models was assessed based on deviance values and simulated envelopes for residuals. Results of fitness assessment indicated that the Poisson model was inadequate for describing the data due to overdispersion. The negative binomial model adequately fitted the observations and was indicated to describe the number of leaves of coffee plants. Based on the negative binomial model, the expected relative increase in the number of leaves was 0.9768% per day. |
id |
UFLA_255ce684b262e48c4b4d87123a2ba785 |
---|---|
oai_identifier_str |
oai:localhost:1/40563 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Leaf count overdispersion in coffee seedlingsSuperdispersão relacionado a contagem de folhas em mudas de cafeeiroPoisson modelNegative binomial modelExponential familyGeneralized linear modelModelo PoissonModelo Binomial NegativoFamília exponencialModelo linear generalizadoCoffee crops play an important role in Brazilian agriculture, with a high level of social and economic participation resulting from the jobs created in the supply chain and from the income obtained by producers and the revenue generated for the country from coffee bean export. In coffee plant growth, leaves have a determinant role in higher production; therefore, the leaf count per plant provides relevant information to producers for adequate crop management, such as foliar fertilizer applications. To describe count data, the Poisson model is the most commonly employed model; when count data show overdispersion, the negative binomial model has been determined to be more adequate. The objective of this study was to compare the fitness of the Poisson and negative binomial models to data on the leaf count per plant in coffee seedlings. Data were collected from an experiment with a randomized block design with 30 treatments and three replicates and four plants per plot. Data from only one treatment, in which the number of leaves was counted over time, were employed. The first count was conducted on 8 April 2016, and the other counts were performed 18, 32, 47, 62, 76, 95, 116, 133, and 153 days after the first evaluation, for a total of ten measurements. The fitness of the models was assessed based on deviance values and simulated envelopes for residuals. Results of fitness assessment indicated that the Poisson model was inadequate for describing the data due to overdispersion. The negative binomial model adequately fitted the observations and was indicated to describe the number of leaves of coffee plants. Based on the negative binomial model, the expected relative increase in the number of leaves was 0.9768% per day.A cultura do café desempenha papel relevante na agricultura do Brasil, com expressiva participação social e econômica tanto pelos empregos gerados na cadeia produtiva, bem como pela renda obtida pelos produtores e pelas divisas geradas para o país na exportação do grão. No crescimento das plantas de café, as folhas desempenham papel decisivo para que tenha maior produção, portanto a contagem do número de folhas por planta fornece informações importantes aos produtores para o manejo adequado da cultura como, por exemplo, a aplicação de adubações foliares. Em geral, na descrição de dados obtidos por contagem, o modelo mais utilizado é o Poisson, sendo que quando os dados apresentam superdispersão, o modelo Binomial Negativo tem se mostrado mais adequado. O objetivo deste trabalho foi comparar o ajuste dos modelos de Poisson e Binomial Negativo em dados de contagens do número de folhas por planta em mudas do cafeeiro. Os dados foram obtidos de um experimento usando o delineamento em blocos casualizados com trinta tratamentos e três repetições com quatro plantas por parcela. Foram utilizados os dados de apenas um tratamento no qual foi feita a contagem do número de folhas ao longo do tempo. A primeira avaliação foi feita em 8 de abril de 2016 e as demais aos 18, 32, 47, 62, 76, 95, 116, 133 e 153 dias após a primeira avaliação, totalizando dez medidas. A adequação dos mesmos foi verificada com base nos valores da Deviance e no envelope simulado para os resíduos. Os resultados do ajuste indicaram que o modelo Poisson foi inadequado para descrição dos dados devido a superdispersão. O modelo Binomial Negativo se ajustou adequadamente e foi indicado para descrever o número de folhas das plantas do cafeeiro. Com base no modelo Binomial Negativo o aumento relativo esperado para o número de folhas foi de 0,9768% para cada dia.Universidade Federal de Santa Maria2020-05-05T11:32:17Z2020-05-05T11:32:17Z2019-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSILVA, E. M. et al. Leaf count overdispersion in coffee seedlings. Ciência Rural, Santa Maria, v. 49, n. 4, abr. 2019. Paginação irregular.http://repositorio.ufla.br/jspui/handle/1/40563Ciência Ruralreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSilva, Edilson MarcelinoFurtado, Thais Destefani RibeiroFernandes, Jaqueline GonçalvesCirillo, Marcelo ÂngeloMuniz, Joel Augustoeng2023-05-26T19:37:10Zoai:localhost:1/40563Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-26T19:37:10Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Leaf count overdispersion in coffee seedlings Superdispersão relacionado a contagem de folhas em mudas de cafeeiro |
title |
Leaf count overdispersion in coffee seedlings |
spellingShingle |
Leaf count overdispersion in coffee seedlings Silva, Edilson Marcelino Poisson model Negative binomial model Exponential family Generalized linear model Modelo Poisson Modelo Binomial Negativo Família exponencial Modelo linear generalizado |
title_short |
Leaf count overdispersion in coffee seedlings |
title_full |
Leaf count overdispersion in coffee seedlings |
title_fullStr |
Leaf count overdispersion in coffee seedlings |
title_full_unstemmed |
Leaf count overdispersion in coffee seedlings |
title_sort |
Leaf count overdispersion in coffee seedlings |
author |
Silva, Edilson Marcelino |
author_facet |
Silva, Edilson Marcelino Furtado, Thais Destefani Ribeiro Fernandes, Jaqueline Gonçalves Cirillo, Marcelo Ângelo Muniz, Joel Augusto |
author_role |
author |
author2 |
Furtado, Thais Destefani Ribeiro Fernandes, Jaqueline Gonçalves Cirillo, Marcelo Ângelo Muniz, Joel Augusto |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Silva, Edilson Marcelino Furtado, Thais Destefani Ribeiro Fernandes, Jaqueline Gonçalves Cirillo, Marcelo Ângelo Muniz, Joel Augusto |
dc.subject.por.fl_str_mv |
Poisson model Negative binomial model Exponential family Generalized linear model Modelo Poisson Modelo Binomial Negativo Família exponencial Modelo linear generalizado |
topic |
Poisson model Negative binomial model Exponential family Generalized linear model Modelo Poisson Modelo Binomial Negativo Família exponencial Modelo linear generalizado |
description |
Coffee crops play an important role in Brazilian agriculture, with a high level of social and economic participation resulting from the jobs created in the supply chain and from the income obtained by producers and the revenue generated for the country from coffee bean export. In coffee plant growth, leaves have a determinant role in higher production; therefore, the leaf count per plant provides relevant information to producers for adequate crop management, such as foliar fertilizer applications. To describe count data, the Poisson model is the most commonly employed model; when count data show overdispersion, the negative binomial model has been determined to be more adequate. The objective of this study was to compare the fitness of the Poisson and negative binomial models to data on the leaf count per plant in coffee seedlings. Data were collected from an experiment with a randomized block design with 30 treatments and three replicates and four plants per plot. Data from only one treatment, in which the number of leaves was counted over time, were employed. The first count was conducted on 8 April 2016, and the other counts were performed 18, 32, 47, 62, 76, 95, 116, 133, and 153 days after the first evaluation, for a total of ten measurements. The fitness of the models was assessed based on deviance values and simulated envelopes for residuals. Results of fitness assessment indicated that the Poisson model was inadequate for describing the data due to overdispersion. The negative binomial model adequately fitted the observations and was indicated to describe the number of leaves of coffee plants. Based on the negative binomial model, the expected relative increase in the number of leaves was 0.9768% per day. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 2020-05-05T11:32:17Z 2020-05-05T11:32:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVA, E. M. et al. Leaf count overdispersion in coffee seedlings. Ciência Rural, Santa Maria, v. 49, n. 4, abr. 2019. Paginação irregular. http://repositorio.ufla.br/jspui/handle/1/40563 |
identifier_str_mv |
SILVA, E. M. et al. Leaf count overdispersion in coffee seedlings. Ciência Rural, Santa Maria, v. 49, n. 4, abr. 2019. Paginação irregular. |
url |
http://repositorio.ufla.br/jspui/handle/1/40563 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência Rural reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439329323909120 |