Streamflow forecasting in Tocantins river basins using machine learning

Detalhes bibliográficos
Autor(a) principal: Duarte, Victor Braga Rodrigues
Data de Publicação: 2022
Outros Autores: Viola, Marcelo Ribeiro, Giongo, Marcos, Uliana, Eduardo Morgan, Mello, Carlos Rogério de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/50606
Resumo: Understanding the behavior of the river regime in watersheds is fundamental for water resources planning and management. Empirical hydrological models are powerful tools for this purpose, with the selection of input variables as one of the main steps of the modeling. Therefore, the objectives of this study were to select the best input variables using the genetic, recursive feature elimination, and vsurf algorithms, and to evaluate the performance of the random forest, artificial neural networks, support vector regression, and M5 model tree models in forecasting daily streamflow in Sono (SRB), Manuel Alves da Natividade (MRB), and Palma (PRB) River basins. Based on several performance indexes, the best model in all basins was the M5 model tree, which showed the best performances in SRB and PRB using the variables selected by the recursive feature elimination algorithm. The good performance of the evaluated models allows them to be used to assist different demands faced by the water resources management in the studied river basins, especially the M5 model tree model using streamflow lags, average rainfall, and evapotranspiration as inputs.
id UFLA_258a031c8b25267d4a460a1d4abf6239
oai_identifier_str oai:localhost:1/50606
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Streamflow forecasting in Tocantins river basins using machine learningArtificial intelligenceFeature selectionHydrological forecastingHydrologyInteligência artificialPrevisão hidrológicaHidrologiaBacias hidrográficas - VazãoUnderstanding the behavior of the river regime in watersheds is fundamental for water resources planning and management. Empirical hydrological models are powerful tools for this purpose, with the selection of input variables as one of the main steps of the modeling. Therefore, the objectives of this study were to select the best input variables using the genetic, recursive feature elimination, and vsurf algorithms, and to evaluate the performance of the random forest, artificial neural networks, support vector regression, and M5 model tree models in forecasting daily streamflow in Sono (SRB), Manuel Alves da Natividade (MRB), and Palma (PRB) River basins. Based on several performance indexes, the best model in all basins was the M5 model tree, which showed the best performances in SRB and PRB using the variables selected by the recursive feature elimination algorithm. The good performance of the evaluated models allows them to be used to assist different demands faced by the water resources management in the studied river basins, especially the M5 model tree model using streamflow lags, average rainfall, and evapotranspiration as inputs.IWA Publishing2022-07-14T21:00:35Z2022-07-14T21:00:35Z2022-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfDUARTE, V. B. R. et al. Streamflow forecasting in Tocantins river basins using machine learning. Water Supply, London, v. 22, n. 7, p. 6230–6244, 2022. DOI: 10.2166/ws.2022.155.http://repositorio.ufla.br/jspui/handle/1/50606Water Supplyreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDuarte, Victor Braga RodriguesViola, Marcelo RibeiroGiongo, MarcosUliana, Eduardo MorganMello, Carlos Rogério deeng2023-05-03T11:53:38Zoai:localhost:1/50606Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-03T11:53:38Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Streamflow forecasting in Tocantins river basins using machine learning
title Streamflow forecasting in Tocantins river basins using machine learning
spellingShingle Streamflow forecasting in Tocantins river basins using machine learning
Duarte, Victor Braga Rodrigues
Artificial intelligence
Feature selection
Hydrological forecasting
Hydrology
Inteligência artificial
Previsão hidrológica
Hidrologia
Bacias hidrográficas - Vazão
title_short Streamflow forecasting in Tocantins river basins using machine learning
title_full Streamflow forecasting in Tocantins river basins using machine learning
title_fullStr Streamflow forecasting in Tocantins river basins using machine learning
title_full_unstemmed Streamflow forecasting in Tocantins river basins using machine learning
title_sort Streamflow forecasting in Tocantins river basins using machine learning
author Duarte, Victor Braga Rodrigues
author_facet Duarte, Victor Braga Rodrigues
Viola, Marcelo Ribeiro
Giongo, Marcos
Uliana, Eduardo Morgan
Mello, Carlos Rogério de
author_role author
author2 Viola, Marcelo Ribeiro
Giongo, Marcos
Uliana, Eduardo Morgan
Mello, Carlos Rogério de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Duarte, Victor Braga Rodrigues
Viola, Marcelo Ribeiro
Giongo, Marcos
Uliana, Eduardo Morgan
Mello, Carlos Rogério de
dc.subject.por.fl_str_mv Artificial intelligence
Feature selection
Hydrological forecasting
Hydrology
Inteligência artificial
Previsão hidrológica
Hidrologia
Bacias hidrográficas - Vazão
topic Artificial intelligence
Feature selection
Hydrological forecasting
Hydrology
Inteligência artificial
Previsão hidrológica
Hidrologia
Bacias hidrográficas - Vazão
description Understanding the behavior of the river regime in watersheds is fundamental for water resources planning and management. Empirical hydrological models are powerful tools for this purpose, with the selection of input variables as one of the main steps of the modeling. Therefore, the objectives of this study were to select the best input variables using the genetic, recursive feature elimination, and vsurf algorithms, and to evaluate the performance of the random forest, artificial neural networks, support vector regression, and M5 model tree models in forecasting daily streamflow in Sono (SRB), Manuel Alves da Natividade (MRB), and Palma (PRB) River basins. Based on several performance indexes, the best model in all basins was the M5 model tree, which showed the best performances in SRB and PRB using the variables selected by the recursive feature elimination algorithm. The good performance of the evaluated models allows them to be used to assist different demands faced by the water resources management in the studied river basins, especially the M5 model tree model using streamflow lags, average rainfall, and evapotranspiration as inputs.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-14T21:00:35Z
2022-07-14T21:00:35Z
2022-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv DUARTE, V. B. R. et al. Streamflow forecasting in Tocantins river basins using machine learning. Water Supply, London, v. 22, n. 7, p. 6230–6244, 2022. DOI: 10.2166/ws.2022.155.
http://repositorio.ufla.br/jspui/handle/1/50606
identifier_str_mv DUARTE, V. B. R. et al. Streamflow forecasting in Tocantins river basins using machine learning. Water Supply, London, v. 22, n. 7, p. 6230–6244, 2022. DOI: 10.2166/ws.2022.155.
url http://repositorio.ufla.br/jspui/handle/1/50606
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IWA Publishing
publisher.none.fl_str_mv IWA Publishing
dc.source.none.fl_str_mv Water Supply
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439012076191744