Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/36167 |
Resumo: | Existing soil maps (legacy data) associated with digital mapping techniques are alternatives to obtain information at lower costs, however, tests are required to do it more efficiently. This study had as objectives to compare different methods to extract information from detailed scale soil maps using decision trees for mapping soil classes at two watersheds in Minas Gerais, validate these maps in the field and use the best method to extrapolate information to larger areas, also validating these maps of larger areas. Detailed soil maps of Vista Bela creek (VBW) and Marcela creek (MCW) watersheds were used as source of information. Seven methods to extract information from maps were compared: the whole polygon, eliminating 20 and 40 m from the polygon boundaries, and with buffers around the sampled points with radii of 25 m, 50 m, 75 m, and 100 m. The Classification and Regression Trees (CART) algorithm was employed to create decision trees and enable creation of soil maps. Accuracy was assessed through overall accuracy and kappa index. The best method was used to extrapolate information to larger areas and maps were validated. The best methods for VCW and MCW were, respectively, eliminating 20 m from polygon edges and buffer of 25 m of radii from points. Maps for larger areas were obtained using these methods. Removing uncertainty areas from legacy soil maps contribute to better modeling and prediction of soil classes. Information generated in this work allowed for validated extrapolation of soil maps for regions surrounding the watersheds. |
id |
UFLA_2c19eee96cda18a64f41747b1cbe5909 |
---|---|
oai_identifier_str |
oai:localhost:1/36167 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areasMapeamento de solos em duas sub-bacias hidrográficas usando dados legados e sua extrapolação para áreas similares do entornoDecision treesSoil scienceTropical soilsÁrvores de decisãoPedologia (Ciência do solo)Solos tropicaisExisting soil maps (legacy data) associated with digital mapping techniques are alternatives to obtain information at lower costs, however, tests are required to do it more efficiently. This study had as objectives to compare different methods to extract information from detailed scale soil maps using decision trees for mapping soil classes at two watersheds in Minas Gerais, validate these maps in the field and use the best method to extrapolate information to larger areas, also validating these maps of larger areas. Detailed soil maps of Vista Bela creek (VBW) and Marcela creek (MCW) watersheds were used as source of information. Seven methods to extract information from maps were compared: the whole polygon, eliminating 20 and 40 m from the polygon boundaries, and with buffers around the sampled points with radii of 25 m, 50 m, 75 m, and 100 m. The Classification and Regression Trees (CART) algorithm was employed to create decision trees and enable creation of soil maps. Accuracy was assessed through overall accuracy and kappa index. The best method was used to extrapolate information to larger areas and maps were validated. The best methods for VCW and MCW were, respectively, eliminating 20 m from polygon edges and buffer of 25 m of radii from points. Maps for larger areas were obtained using these methods. Removing uncertainty areas from legacy soil maps contribute to better modeling and prediction of soil classes. Information generated in this work allowed for validated extrapolation of soil maps for regions surrounding the watersheds.Mapas de solos existentes (dados legados) associados a técnicas de mapeamento digital são alternativas para obter informações a menores custos, entretanto, alguns testes são necessários para se fazer isso de forma mais eficiente. Este estudo objetivou comparar diferentes métodos para extrair informações de mapas de solos em escala detalhada usando árvores de decisão para mapear classes de solos em duas sub-bacias hidrográficas de Minas Gerais, validar os mapas em campo e usar o melhor método para extrapolar informações para áreas maiores, também validando estes mapas. Mapas de solos detalhados das sub-bacias do ribeirão Vista Bela (VBW) e ribeirão Marcela (MCW) foram utilizados como fonte de informação. Sete métodos para extrair informações de mapas foram comparados: polígono todo, eliminando 20 e 40 m das bordas dos polígonos, e com buffers em torno dos pontos amostrados com raios de 25 m, 50 m, 75 m e 100 m. O algoritmo Classification and Regression Trees (CART) foi utilizado para gerar árvores de decisão e permitir a criação de mapas de solos. A acurácia dos mapas foi avaliada através da acurácia global e índice Kappa. O melhor método foi utilizado para extrapolar informações para áreas maiores e esses mapas foram validados. Os melhores métodos para VCW e MCW foram, respectivamente, eliminando 20 m das bordas dos polígonos e buffer com raio de 25 m ao redor dos pontos. Mapas para áreas maiores foram obtidos usando esses métodos. Remoção de áreas de incerteza de mapas legados de solos contribuem para uma melhor modelagem e predição de classes de solos. A utilização de informações geradas neste trabalho permitiu a extrapolação validada de mapas de solos para regiões do entorno das sub-bacias hidrográficas.Universidade Federal de Lavras2019-08-14T11:32:56Z2019-08-14T11:32:56Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfPELEGRINO, M. H. P. et al. Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas. Ciência e Agrotecnologia, Lavras, v. 40, n. 5, Sept./Oct. 2016.http://repositorio.ufla.br/jspui/handle/1/36167Ciência e Agrotecnologiareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessPelegrino, Marcelo Henrique ProcópioSilva, Sérgio Henrique GodinhoMenezes, Michele Duarte deSilva, Elidiane daOwens, Phillip RayCuri, Niltonpor2019-08-14T11:32:57Zoai:localhost:1/36167Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2019-08-14T11:32:57Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas Mapeamento de solos em duas sub-bacias hidrográficas usando dados legados e sua extrapolação para áreas similares do entorno |
title |
Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas |
spellingShingle |
Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas Pelegrino, Marcelo Henrique Procópio Decision trees Soil science Tropical soils Árvores de decisão Pedologia (Ciência do solo) Solos tropicais |
title_short |
Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas |
title_full |
Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas |
title_fullStr |
Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas |
title_full_unstemmed |
Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas |
title_sort |
Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas |
author |
Pelegrino, Marcelo Henrique Procópio |
author_facet |
Pelegrino, Marcelo Henrique Procópio Silva, Sérgio Henrique Godinho Menezes, Michele Duarte de Silva, Elidiane da Owens, Phillip Ray Curi, Nilton |
author_role |
author |
author2 |
Silva, Sérgio Henrique Godinho Menezes, Michele Duarte de Silva, Elidiane da Owens, Phillip Ray Curi, Nilton |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Pelegrino, Marcelo Henrique Procópio Silva, Sérgio Henrique Godinho Menezes, Michele Duarte de Silva, Elidiane da Owens, Phillip Ray Curi, Nilton |
dc.subject.por.fl_str_mv |
Decision trees Soil science Tropical soils Árvores de decisão Pedologia (Ciência do solo) Solos tropicais |
topic |
Decision trees Soil science Tropical soils Árvores de decisão Pedologia (Ciência do solo) Solos tropicais |
description |
Existing soil maps (legacy data) associated with digital mapping techniques are alternatives to obtain information at lower costs, however, tests are required to do it more efficiently. This study had as objectives to compare different methods to extract information from detailed scale soil maps using decision trees for mapping soil classes at two watersheds in Minas Gerais, validate these maps in the field and use the best method to extrapolate information to larger areas, also validating these maps of larger areas. Detailed soil maps of Vista Bela creek (VBW) and Marcela creek (MCW) watersheds were used as source of information. Seven methods to extract information from maps were compared: the whole polygon, eliminating 20 and 40 m from the polygon boundaries, and with buffers around the sampled points with radii of 25 m, 50 m, 75 m, and 100 m. The Classification and Regression Trees (CART) algorithm was employed to create decision trees and enable creation of soil maps. Accuracy was assessed through overall accuracy and kappa index. The best method was used to extrapolate information to larger areas and maps were validated. The best methods for VCW and MCW were, respectively, eliminating 20 m from polygon edges and buffer of 25 m of radii from points. Maps for larger areas were obtained using these methods. Removing uncertainty areas from legacy soil maps contribute to better modeling and prediction of soil classes. Information generated in this work allowed for validated extrapolation of soil maps for regions surrounding the watersheds. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2019-08-14T11:32:56Z 2019-08-14T11:32:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
PELEGRINO, M. H. P. et al. Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas. Ciência e Agrotecnologia, Lavras, v. 40, n. 5, Sept./Oct. 2016. http://repositorio.ufla.br/jspui/handle/1/36167 |
identifier_str_mv |
PELEGRINO, M. H. P. et al. Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas. Ciência e Agrotecnologia, Lavras, v. 40, n. 5, Sept./Oct. 2016. |
url |
http://repositorio.ufla.br/jspui/handle/1/36167 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras |
publisher.none.fl_str_mv |
Universidade Federal de Lavras |
dc.source.none.fl_str_mv |
Ciência e Agrotecnologia reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439278008696832 |