Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas

Detalhes bibliográficos
Autor(a) principal: Pelegrino, Marcelo Henrique Procópio
Data de Publicação: 2016
Outros Autores: Silva, Sérgio Henrique Godinho, Menezes, Michele Duarte de, Silva, Elidiane da, Owens, Phillip Ray, Curi, Nilton
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/36167
Resumo: Existing soil maps (legacy data) associated with digital mapping techniques are alternatives to obtain information at lower costs, however, tests are required to do it more efficiently. This study had as objectives to compare different methods to extract information from detailed scale soil maps using decision trees for mapping soil classes at two watersheds in Minas Gerais, validate these maps in the field and use the best method to extrapolate information to larger areas, also validating these maps of larger areas. Detailed soil maps of Vista Bela creek (VBW) and Marcela creek (MCW) watersheds were used as source of information. Seven methods to extract information from maps were compared: the whole polygon, eliminating 20 and 40 m from the polygon boundaries, and with buffers around the sampled points with radii of 25 m, 50 m, 75 m, and 100 m. The Classification and Regression Trees (CART) algorithm was employed to create decision trees and enable creation of soil maps. Accuracy was assessed through overall accuracy and kappa index. The best method was used to extrapolate information to larger areas and maps were validated. The best methods for VCW and MCW were, respectively, eliminating 20 m from polygon edges and buffer of 25 m of radii from points. Maps for larger areas were obtained using these methods. Removing uncertainty areas from legacy soil maps contribute to better modeling and prediction of soil classes. Information generated in this work allowed for validated extrapolation of soil maps for regions surrounding the watersheds.
id UFLA_2c19eee96cda18a64f41747b1cbe5909
oai_identifier_str oai:localhost:1/36167
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areasMapeamento de solos em duas sub-bacias hidrográficas usando dados legados e sua extrapolação para áreas similares do entornoDecision treesSoil scienceTropical soilsÁrvores de decisãoPedologia (Ciência do solo)Solos tropicaisExisting soil maps (legacy data) associated with digital mapping techniques are alternatives to obtain information at lower costs, however, tests are required to do it more efficiently. This study had as objectives to compare different methods to extract information from detailed scale soil maps using decision trees for mapping soil classes at two watersheds in Minas Gerais, validate these maps in the field and use the best method to extrapolate information to larger areas, also validating these maps of larger areas. Detailed soil maps of Vista Bela creek (VBW) and Marcela creek (MCW) watersheds were used as source of information. Seven methods to extract information from maps were compared: the whole polygon, eliminating 20 and 40 m from the polygon boundaries, and with buffers around the sampled points with radii of 25 m, 50 m, 75 m, and 100 m. The Classification and Regression Trees (CART) algorithm was employed to create decision trees and enable creation of soil maps. Accuracy was assessed through overall accuracy and kappa index. The best method was used to extrapolate information to larger areas and maps were validated. The best methods for VCW and MCW were, respectively, eliminating 20 m from polygon edges and buffer of 25 m of radii from points. Maps for larger areas were obtained using these methods. Removing uncertainty areas from legacy soil maps contribute to better modeling and prediction of soil classes. Information generated in this work allowed for validated extrapolation of soil maps for regions surrounding the watersheds.Mapas de solos existentes (dados legados) associados a técnicas de mapeamento digital são alternativas para obter informações a menores custos, entretanto, alguns testes são necessários para se fazer isso de forma mais eficiente. Este estudo objetivou comparar diferentes métodos para extrair informações de mapas de solos em escala detalhada usando árvores de decisão para mapear classes de solos em duas sub-bacias hidrográficas de Minas Gerais, validar os mapas em campo e usar o melhor método para extrapolar informações para áreas maiores, também validando estes mapas. Mapas de solos detalhados das sub-bacias do ribeirão Vista Bela (VBW) e ribeirão Marcela (MCW) foram utilizados como fonte de informação. Sete métodos para extrair informações de mapas foram comparados: polígono todo, eliminando 20 e 40 m das bordas dos polígonos, e com buffers em torno dos pontos amostrados com raios de 25 m, 50 m, 75 m e 100 m. O algoritmo Classification and Regression Trees (CART) foi utilizado para gerar árvores de decisão e permitir a criação de mapas de solos. A acurácia dos mapas foi avaliada através da acurácia global e índice Kappa. O melhor método foi utilizado para extrapolar informações para áreas maiores e esses mapas foram validados. Os melhores métodos para VCW e MCW foram, respectivamente, eliminando 20 m das bordas dos polígonos e buffer com raio de 25 m ao redor dos pontos. Mapas para áreas maiores foram obtidos usando esses métodos. Remoção de áreas de incerteza de mapas legados de solos contribuem para uma melhor modelagem e predição de classes de solos. A utilização de informações geradas neste trabalho permitiu a extrapolação validada de mapas de solos para regiões do entorno das sub-bacias hidrográficas.Universidade Federal de Lavras2019-08-14T11:32:56Z2019-08-14T11:32:56Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfPELEGRINO, M. H. P. et al. Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas. Ciência e Agrotecnologia, Lavras, v. 40, n. 5, Sept./Oct. 2016.http://repositorio.ufla.br/jspui/handle/1/36167Ciência e Agrotecnologiareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessPelegrino, Marcelo Henrique ProcópioSilva, Sérgio Henrique GodinhoMenezes, Michele Duarte deSilva, Elidiane daOwens, Phillip RayCuri, Niltonpor2019-08-14T11:32:57Zoai:localhost:1/36167Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2019-08-14T11:32:57Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
Mapeamento de solos em duas sub-bacias hidrográficas usando dados legados e sua extrapolação para áreas similares do entorno
title Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
spellingShingle Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
Pelegrino, Marcelo Henrique Procópio
Decision trees
Soil science
Tropical soils
Árvores de decisão
Pedologia (Ciência do solo)
Solos tropicais
title_short Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
title_full Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
title_fullStr Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
title_full_unstemmed Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
title_sort Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
author Pelegrino, Marcelo Henrique Procópio
author_facet Pelegrino, Marcelo Henrique Procópio
Silva, Sérgio Henrique Godinho
Menezes, Michele Duarte de
Silva, Elidiane da
Owens, Phillip Ray
Curi, Nilton
author_role author
author2 Silva, Sérgio Henrique Godinho
Menezes, Michele Duarte de
Silva, Elidiane da
Owens, Phillip Ray
Curi, Nilton
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Pelegrino, Marcelo Henrique Procópio
Silva, Sérgio Henrique Godinho
Menezes, Michele Duarte de
Silva, Elidiane da
Owens, Phillip Ray
Curi, Nilton
dc.subject.por.fl_str_mv Decision trees
Soil science
Tropical soils
Árvores de decisão
Pedologia (Ciência do solo)
Solos tropicais
topic Decision trees
Soil science
Tropical soils
Árvores de decisão
Pedologia (Ciência do solo)
Solos tropicais
description Existing soil maps (legacy data) associated with digital mapping techniques are alternatives to obtain information at lower costs, however, tests are required to do it more efficiently. This study had as objectives to compare different methods to extract information from detailed scale soil maps using decision trees for mapping soil classes at two watersheds in Minas Gerais, validate these maps in the field and use the best method to extrapolate information to larger areas, also validating these maps of larger areas. Detailed soil maps of Vista Bela creek (VBW) and Marcela creek (MCW) watersheds were used as source of information. Seven methods to extract information from maps were compared: the whole polygon, eliminating 20 and 40 m from the polygon boundaries, and with buffers around the sampled points with radii of 25 m, 50 m, 75 m, and 100 m. The Classification and Regression Trees (CART) algorithm was employed to create decision trees and enable creation of soil maps. Accuracy was assessed through overall accuracy and kappa index. The best method was used to extrapolate information to larger areas and maps were validated. The best methods for VCW and MCW were, respectively, eliminating 20 m from polygon edges and buffer of 25 m of radii from points. Maps for larger areas were obtained using these methods. Removing uncertainty areas from legacy soil maps contribute to better modeling and prediction of soil classes. Information generated in this work allowed for validated extrapolation of soil maps for regions surrounding the watersheds.
publishDate 2016
dc.date.none.fl_str_mv 2016
2019-08-14T11:32:56Z
2019-08-14T11:32:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv PELEGRINO, M. H. P. et al. Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas. Ciência e Agrotecnologia, Lavras, v. 40, n. 5, Sept./Oct. 2016.
http://repositorio.ufla.br/jspui/handle/1/36167
identifier_str_mv PELEGRINO, M. H. P. et al. Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas. Ciência e Agrotecnologia, Lavras, v. 40, n. 5, Sept./Oct. 2016.
url http://repositorio.ufla.br/jspui/handle/1/36167
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
publisher.none.fl_str_mv Universidade Federal de Lavras
dc.source.none.fl_str_mv Ciência e Agrotecnologia
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439278008696832