Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/30862 |
Resumo: | Object-based change detection is a powerful analysis tool for remote sensing data, but few studies consider the potential of temporal semivariogram indices for mapping land-cover changes using object-based approaches. In this study, we explored and evaluated the performance of semivariogram indices calculated from remote sensing imagery, using the Normalized Differential Vegetation Index (NDVI) to detect changes in spatial features related to land cover caused by a disastrous 2015 dam failure in Brazil’s Mariana district. We calculated the NDVI from Landsat 8 images acquired before and after the disaster, then created objects by multiresolution segmentation analysis based on post-disaster images. Experimental semivariograms were computed within the image objects and semivariogram indices were calculated and selected by principal component analysis. We used the selected indices as input data to a support vector machine algorithm for classifying change and no-change classes. The selected semivariogram indices showed their effectiveness as input data for object-based change detection analysis, producing highly accurate maps of areas affected by post-dam-failure flooding in the region. This approach can be used in many other contexts for rapid and accurate assessment of such land-cover changes. |
id |
UFLA_3257e404728b153359e47172541e0a81 |
---|---|
oai_identifier_str |
oai:localhost:1/30862 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, BrazilDetecção de mudanças baseada em objetos utilizando indices do semivariograma derivados de imagens NDVI: O disastre ambiental em Mariana, BrasilRemote sensingGeostatisticsFeature extractionSensoriamento remotoGeostatisticaObject-based change detection is a powerful analysis tool for remote sensing data, but few studies consider the potential of temporal semivariogram indices for mapping land-cover changes using object-based approaches. In this study, we explored and evaluated the performance of semivariogram indices calculated from remote sensing imagery, using the Normalized Differential Vegetation Index (NDVI) to detect changes in spatial features related to land cover caused by a disastrous 2015 dam failure in Brazil’s Mariana district. We calculated the NDVI from Landsat 8 images acquired before and after the disaster, then created objects by multiresolution segmentation analysis based on post-disaster images. Experimental semivariograms were computed within the image objects and semivariogram indices were calculated and selected by principal component analysis. We used the selected indices as input data to a support vector machine algorithm for classifying change and no-change classes. The selected semivariogram indices showed their effectiveness as input data for object-based change detection analysis, producing highly accurate maps of areas affected by post-dam-failure flooding in the region. This approach can be used in many other contexts for rapid and accurate assessment of such land-cover changes.Recentemente, variáveis geoestatísticas derivadas de imagens de sensoriamento remoto ganharam espaço dentre os procedimentos de detecção de mudanças, porém, o potencial temporal destas variáveis para o mapeamento das mudanças baseado na análise por objetos ainda é pouco estudado. Neste estudo, o desempenho de um conjunto de índices calculados de semivariogramas derivados de imagens NDVI bitemporais para detectar mudanças na cobertura do solo foi analisado e avaliado. O município de Mariana foi selecionado para teste e validação da metodologia devido ao grande impacto ocasionado pelo desastre. O processo iniciou-se com a aquisição de imagens Landsat 8 antes e após o desastre e o cálculo do NDVI. Os objetos foram criados através da segmentação em multiresolução baseada na imagem pós-desastre. Os semivariogramas experimentais foram gerados dentro de cada objeto e os índices foram extraídos e selecionados através da análise de componentes principais. Os índices selecionados foram utilizados como dados de entrada para o algoritmo support vector machines para a classificação de áreas de mudança e não mudança. Os índices selecionados se mostraram efetivos para a detecção de mudanças, indicando a possibilidade de utilização para a detecção de mudanças baseada em objetos, resultando em um mapa precisos das áreas inundadas afetadas pelo desastre. Esta abordagem pode ser usada em muitos outros contextos para uma avaliação rápida e precisa de tais mudanças na cobertura do solo.Universidade Federal de Santa Maria2018-09-28T20:36:28Z2018-09-28T20:36:28Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSILVEIRA, E. M. de O. et al. Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil. Ciência e Agrotecnologia, Lavras, v. 41, n. 5, p. 554-564, Sept./Oct. 2017.http://repositorio.ufla.br/jspui/handle/1/30862Ciência e Agrotecnologiareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSilveira, Eduarda Martiniano de OliveiraAcerbi Júnior, Fausto WeimarMello, José Márcio deBueno, Inácio Thomazpor2018-09-28T20:36:28Zoai:localhost:1/30862Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2018-09-28T20:36:28Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil Detecção de mudanças baseada em objetos utilizando indices do semivariograma derivados de imagens NDVI: O disastre ambiental em Mariana, Brasil |
title |
Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil |
spellingShingle |
Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil Silveira, Eduarda Martiniano de Oliveira Remote sensing Geostatistics Feature extraction Sensoriamento remoto Geostatistica |
title_short |
Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil |
title_full |
Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil |
title_fullStr |
Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil |
title_full_unstemmed |
Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil |
title_sort |
Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil |
author |
Silveira, Eduarda Martiniano de Oliveira |
author_facet |
Silveira, Eduarda Martiniano de Oliveira Acerbi Júnior, Fausto Weimar Mello, José Márcio de Bueno, Inácio Thomaz |
author_role |
author |
author2 |
Acerbi Júnior, Fausto Weimar Mello, José Márcio de Bueno, Inácio Thomaz |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Silveira, Eduarda Martiniano de Oliveira Acerbi Júnior, Fausto Weimar Mello, José Márcio de Bueno, Inácio Thomaz |
dc.subject.por.fl_str_mv |
Remote sensing Geostatistics Feature extraction Sensoriamento remoto Geostatistica |
topic |
Remote sensing Geostatistics Feature extraction Sensoriamento remoto Geostatistica |
description |
Object-based change detection is a powerful analysis tool for remote sensing data, but few studies consider the potential of temporal semivariogram indices for mapping land-cover changes using object-based approaches. In this study, we explored and evaluated the performance of semivariogram indices calculated from remote sensing imagery, using the Normalized Differential Vegetation Index (NDVI) to detect changes in spatial features related to land cover caused by a disastrous 2015 dam failure in Brazil’s Mariana district. We calculated the NDVI from Landsat 8 images acquired before and after the disaster, then created objects by multiresolution segmentation analysis based on post-disaster images. Experimental semivariograms were computed within the image objects and semivariogram indices were calculated and selected by principal component analysis. We used the selected indices as input data to a support vector machine algorithm for classifying change and no-change classes. The selected semivariogram indices showed their effectiveness as input data for object-based change detection analysis, producing highly accurate maps of areas affected by post-dam-failure flooding in the region. This approach can be used in many other contexts for rapid and accurate assessment of such land-cover changes. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2018-09-28T20:36:28Z 2018-09-28T20:36:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVEIRA, E. M. de O. et al. Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil. Ciência e Agrotecnologia, Lavras, v. 41, n. 5, p. 554-564, Sept./Oct. 2017. http://repositorio.ufla.br/jspui/handle/1/30862 |
identifier_str_mv |
SILVEIRA, E. M. de O. et al. Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil. Ciência e Agrotecnologia, Lavras, v. 41, n. 5, p. 554-564, Sept./Oct. 2017. |
url |
http://repositorio.ufla.br/jspui/handle/1/30862 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência e Agrotecnologia reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439198030659584 |