Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil

Detalhes bibliográficos
Autor(a) principal: Silveira, Eduarda Martiniano de Oliveira
Data de Publicação: 2017
Outros Autores: Acerbi Júnior, Fausto Weimar, Mello, José Márcio de, Bueno, Inácio Thomaz
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/30862
Resumo: Object-based change detection is a powerful analysis tool for remote sensing data, but few studies consider the potential of temporal semivariogram indices for mapping land-cover changes using object-based approaches. In this study, we explored and evaluated the performance of semivariogram indices calculated from remote sensing imagery, using the Normalized Differential Vegetation Index (NDVI) to detect changes in spatial features related to land cover caused by a disastrous 2015 dam failure in Brazil’s Mariana district. We calculated the NDVI from Landsat 8 images acquired before and after the disaster, then created objects by multiresolution segmentation analysis based on post-disaster images. Experimental semivariograms were computed within the image objects and semivariogram indices were calculated and selected by principal component analysis. We used the selected indices as input data to a support vector machine algorithm for classifying change and no-change classes. The selected semivariogram indices showed their effectiveness as input data for object-based change detection analysis, producing highly accurate maps of areas affected by post-dam-failure flooding in the region. This approach can be used in many other contexts for rapid and accurate assessment of such land-cover changes.
id UFLA_3257e404728b153359e47172541e0a81
oai_identifier_str oai:localhost:1/30862
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, BrazilDetecção de mudanças baseada em objetos utilizando indices do semivariograma derivados de imagens NDVI: O disastre ambiental em Mariana, BrasilRemote sensingGeostatisticsFeature extractionSensoriamento remotoGeostatisticaObject-based change detection is a powerful analysis tool for remote sensing data, but few studies consider the potential of temporal semivariogram indices for mapping land-cover changes using object-based approaches. In this study, we explored and evaluated the performance of semivariogram indices calculated from remote sensing imagery, using the Normalized Differential Vegetation Index (NDVI) to detect changes in spatial features related to land cover caused by a disastrous 2015 dam failure in Brazil’s Mariana district. We calculated the NDVI from Landsat 8 images acquired before and after the disaster, then created objects by multiresolution segmentation analysis based on post-disaster images. Experimental semivariograms were computed within the image objects and semivariogram indices were calculated and selected by principal component analysis. We used the selected indices as input data to a support vector machine algorithm for classifying change and no-change classes. The selected semivariogram indices showed their effectiveness as input data for object-based change detection analysis, producing highly accurate maps of areas affected by post-dam-failure flooding in the region. This approach can be used in many other contexts for rapid and accurate assessment of such land-cover changes.Recentemente, variáveis geoestatísticas derivadas de imagens de sensoriamento remoto ganharam espaço dentre os procedimentos de detecção de mudanças, porém, o potencial temporal destas variáveis para o mapeamento das mudanças baseado na análise por objetos ainda é pouco estudado. Neste estudo, o desempenho de um conjunto de índices calculados de semivariogramas derivados de imagens NDVI bitemporais para detectar mudanças na cobertura do solo foi analisado e avaliado. O município de Mariana foi selecionado para teste e validação da metodologia devido ao grande impacto ocasionado pelo desastre. O processo iniciou-se com a aquisição de imagens Landsat 8 antes e após o desastre e o cálculo do NDVI. Os objetos foram criados através da segmentação em multiresolução baseada na imagem pós-desastre. Os semivariogramas experimentais foram gerados dentro de cada objeto e os índices foram extraídos e selecionados através da análise de componentes principais. Os índices selecionados foram utilizados como dados de entrada para o algoritmo support vector machines para a classificação de áreas de mudança e não mudança. Os índices selecionados se mostraram efetivos para a detecção de mudanças, indicando a possibilidade de utilização para a detecção de mudanças baseada em objetos, resultando em um mapa precisos das áreas inundadas afetadas pelo desastre. Esta abordagem pode ser usada em muitos outros contextos para uma avaliação rápida e precisa de tais mudanças na cobertura do solo.Universidade Federal de Santa Maria2018-09-28T20:36:28Z2018-09-28T20:36:28Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSILVEIRA, E. M. de O. et al. Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil. Ciência e Agrotecnologia, Lavras, v. 41, n. 5, p. 554-564, Sept./Oct. 2017.http://repositorio.ufla.br/jspui/handle/1/30862Ciência e Agrotecnologiareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSilveira, Eduarda Martiniano de OliveiraAcerbi Júnior, Fausto WeimarMello, José Márcio deBueno, Inácio Thomazpor2018-09-28T20:36:28Zoai:localhost:1/30862Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2018-09-28T20:36:28Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil
Detecção de mudanças baseada em objetos utilizando indices do semivariograma derivados de imagens NDVI: O disastre ambiental em Mariana, Brasil
title Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil
spellingShingle Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil
Silveira, Eduarda Martiniano de Oliveira
Remote sensing
Geostatistics
Feature extraction
Sensoriamento remoto
Geostatistica
title_short Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil
title_full Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil
title_fullStr Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil
title_full_unstemmed Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil
title_sort Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil
author Silveira, Eduarda Martiniano de Oliveira
author_facet Silveira, Eduarda Martiniano de Oliveira
Acerbi Júnior, Fausto Weimar
Mello, José Márcio de
Bueno, Inácio Thomaz
author_role author
author2 Acerbi Júnior, Fausto Weimar
Mello, José Márcio de
Bueno, Inácio Thomaz
author2_role author
author
author
dc.contributor.author.fl_str_mv Silveira, Eduarda Martiniano de Oliveira
Acerbi Júnior, Fausto Weimar
Mello, José Márcio de
Bueno, Inácio Thomaz
dc.subject.por.fl_str_mv Remote sensing
Geostatistics
Feature extraction
Sensoriamento remoto
Geostatistica
topic Remote sensing
Geostatistics
Feature extraction
Sensoriamento remoto
Geostatistica
description Object-based change detection is a powerful analysis tool for remote sensing data, but few studies consider the potential of temporal semivariogram indices for mapping land-cover changes using object-based approaches. In this study, we explored and evaluated the performance of semivariogram indices calculated from remote sensing imagery, using the Normalized Differential Vegetation Index (NDVI) to detect changes in spatial features related to land cover caused by a disastrous 2015 dam failure in Brazil’s Mariana district. We calculated the NDVI from Landsat 8 images acquired before and after the disaster, then created objects by multiresolution segmentation analysis based on post-disaster images. Experimental semivariograms were computed within the image objects and semivariogram indices were calculated and selected by principal component analysis. We used the selected indices as input data to a support vector machine algorithm for classifying change and no-change classes. The selected semivariogram indices showed their effectiveness as input data for object-based change detection analysis, producing highly accurate maps of areas affected by post-dam-failure flooding in the region. This approach can be used in many other contexts for rapid and accurate assessment of such land-cover changes.
publishDate 2017
dc.date.none.fl_str_mv 2017
2018-09-28T20:36:28Z
2018-09-28T20:36:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVEIRA, E. M. de O. et al. Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil. Ciência e Agrotecnologia, Lavras, v. 41, n. 5, p. 554-564, Sept./Oct. 2017.
http://repositorio.ufla.br/jspui/handle/1/30862
identifier_str_mv SILVEIRA, E. M. de O. et al. Object-based change detection using semivariogram indices derived from NDVI images: The environmental disaster in Mariana, Brazil. Ciência e Agrotecnologia, Lavras, v. 41, n. 5, p. 554-564, Sept./Oct. 2017.
url http://repositorio.ufla.br/jspui/handle/1/30862
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência e Agrotecnologia
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439198030659584