Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/49536 |
Resumo: | One of the most important processes in the hydrology of the critical zone is the rainfall interception by forest canopies. The canopy-rainfall interactions drive the water and nutrient cycles by redistributing rainfall in both time and space. This defines the fate of many hydrological processes, such as soil water dynamics, evapotranspiration, streamflow, spatiotemporal pattern of nutrients, and groundwater recharge. Although the canopy-rainfall interactions are well-known in many forests worldwide, there is still a knowledge gap in the effects of extreme weather (e.g., droughts) on these interactions. In this regard, the present study aims to improve the understanding regarding rainfall partitioning in a Neotropical forest during a prolonged drought. Rainfall partitioning starts with the canopy intercepting the rainfall and splitting it into stemflow and throughfall. Throughfall and stemflow is the amount of water that reaches the floor, known as net rainfall. A parcel of the intercepted water returns to the atmosphere by evaporation during and after the event. The canopy evaporation and throughfall are the most significant part of the rainfall partitioning, summing up to 99.5% in some tropical forests. Therefore, they are the subject of the present study. Physical models mimic reality and are key tools to advance the knowledge of complex physical processes such as rainfall interception. The Liu and Gash models have presented adequate performances to model the rainfall interception in different climates and forests. However, they had never been applied to drought conditions. The Liu model overcame the Gash model in the Neotropical forest because it better represents the stratified canopy. In non-drought periods, solar radiation and the energy stored in biomass and the air inside the forest are responsible for canopy evaporation. Besides the abovementioned energy sources, the energy advection from surrounding areas plays a more important role and increases canopy evaporation during droughts. Another important consideration is the spatial distribution of throughfall and how it behaves during droughts. The time stability index was considered to assess the behavior of the spatial variability of throughfall over time to highlight the likely influence of forest and weather dynamics on it. Misinterpretation of time stability of throughfall was observed in prior studies because the changes in forest structure and weather patterns had not been considered. Biomass, the dominance of some species, and tree occupation are forest characteristics driving the spatial distribution and time stability of throughfall. These structures change due to ecological succession or regenerating from a disturbance (e.g., droughts), which modify the spatial distribution of throughfall. Moreover, maximum rainfall intensities are different in drought periods, changing the canopy’s saturation/unsaturation processes, and therefore the time stability. In this sense, droughts modify the canopy-rainfall interactions by enhancing canopy evaporation and changing the spatial distribution of throughfall over time. |
id |
UFLA_3a9ce5495e43bd3a1af2392cce7a29fb |
---|---|
oai_identifier_str |
oai:localhost:1/49536 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoringInsights into the canopy-rainfall interactions: new experiences from a long-term neotropical forest monitoringInterceptação da precipitaçãoBalanço de energiaDinâmica florestalFlorestas neotropicaisMata AtlânticaRainfall partitioningAtlantic forestEnergy balanceForest dynamicsCiência do SoloOne of the most important processes in the hydrology of the critical zone is the rainfall interception by forest canopies. The canopy-rainfall interactions drive the water and nutrient cycles by redistributing rainfall in both time and space. This defines the fate of many hydrological processes, such as soil water dynamics, evapotranspiration, streamflow, spatiotemporal pattern of nutrients, and groundwater recharge. Although the canopy-rainfall interactions are well-known in many forests worldwide, there is still a knowledge gap in the effects of extreme weather (e.g., droughts) on these interactions. In this regard, the present study aims to improve the understanding regarding rainfall partitioning in a Neotropical forest during a prolonged drought. Rainfall partitioning starts with the canopy intercepting the rainfall and splitting it into stemflow and throughfall. Throughfall and stemflow is the amount of water that reaches the floor, known as net rainfall. A parcel of the intercepted water returns to the atmosphere by evaporation during and after the event. The canopy evaporation and throughfall are the most significant part of the rainfall partitioning, summing up to 99.5% in some tropical forests. Therefore, they are the subject of the present study. Physical models mimic reality and are key tools to advance the knowledge of complex physical processes such as rainfall interception. The Liu and Gash models have presented adequate performances to model the rainfall interception in different climates and forests. However, they had never been applied to drought conditions. The Liu model overcame the Gash model in the Neotropical forest because it better represents the stratified canopy. In non-drought periods, solar radiation and the energy stored in biomass and the air inside the forest are responsible for canopy evaporation. Besides the abovementioned energy sources, the energy advection from surrounding areas plays a more important role and increases canopy evaporation during droughts. Another important consideration is the spatial distribution of throughfall and how it behaves during droughts. The time stability index was considered to assess the behavior of the spatial variability of throughfall over time to highlight the likely influence of forest and weather dynamics on it. Misinterpretation of time stability of throughfall was observed in prior studies because the changes in forest structure and weather patterns had not been considered. Biomass, the dominance of some species, and tree occupation are forest characteristics driving the spatial distribution and time stability of throughfall. These structures change due to ecological succession or regenerating from a disturbance (e.g., droughts), which modify the spatial distribution of throughfall. Moreover, maximum rainfall intensities are different in drought periods, changing the canopy’s saturation/unsaturation processes, and therefore the time stability. In this sense, droughts modify the canopy-rainfall interactions by enhancing canopy evaporation and changing the spatial distribution of throughfall over time.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)A interceptação da precipitação pelos dosséis florestais é um dos processos hidrológicos mais importantes da zona crítica. As interações dossel-precipitação conduzem os ciclos da água e de nutrientes ao redistribuir a precipitação tanto no tempo quanto no espaço. Tais interações definem vários processos hidrológicos tais como a dinâmica da água no solo, a evapotranspiração, o escoamento superficial, os padrões espaço-tempo dos nutrientes, a recarga subterrânea, dentre outros. As relações dossel-precipitação ainda são pouco conhecidas em vários biomas florestais, principalmente no tocante aos efeitos de condições climáticas severas (e.g., secas) nessas interações. Neste sentido, o presente estudo objetivou investigar a partição da precipitação em uma floresta Neotropical durante uma seca prolongada. A partição da precipitação se inicia com a interceptação da chuva pelo dossel dando início ao escoamento pelo tronco e precipitação interna. Precipitação interna e escoamento pelo tronco são as parcelas da precipitação que alcançam o solo e, juntas, são conhecidas como precipitação efetiva. Outra parcela da precipitação retorna à atmosfera por evaporação durante e após o evento. A evaporação do dossel e a precipitação interna são as maiores parcelas da partição da precipitação, podendo chegar a 99,5% em florestas tropicais e, por isso, são as variáveis analisadas nesse estudo. Modelos físicos imitam a realidade e são ferramentas essenciais para avançar no entendimento de processos físicos complexos como a interceptação da precipitação. Os modelos de Liu e Gash tiveram atuações satisfatórias modelando a interceptação da chuva em diferentes climas e florestas. Porém, eles nunca haviam sido aplicados para condições de seca. O modelo de Liu sobressaiu ao de Gash na floresta Neotropical por representar melhor a estratificação do dossel. Em períodos sem seca, a radiação solar e a energia armazenada no interior da floresta (ar e biomassa) são responsáveis pela evaporação do dossel. Além dessas fontes de energia, a advecção de áreas circunvizinhas tem atuação mais importante e aumenta a evaporação nas secas. Outra consideração importante é o comportamento da distribuição espacial da precipitação interna durante secas. O índice de estabilidade temporal foi utilizado para avaliar o comportamento da variabilidade espacial da precipitação interna ao longo do tempo e destacar a possível influência da dinâmica climática e florestal. Interpretações equivocadas da estabilidade temporal da precipitação interna foram observadas em estudos anteriores porque as mudanças estruturais da floresta e em padrões climáticos não foram consideradas. Biomassa, a dominância de algumas espécies e a ocupação por árvores são características florestais que conduzem a distribuição espacial e a estabilidade temporal da precipitação interna. Essas estruturas mudam devido a sucessões ecológicas ou recuperando de alguma perturbação (e.g., secas), o que altera a distribuição espacial da precipitação interna. Ademais, as intensidades máximas das precipitações são diferentes durante as secas, alterando os processos de saturação/instauração do dossel e, portanto, a estabilidade temporal. Assim, secas modificam as interações dossel-precipitação aumentando a evaporação do dossel e alterando a distribuição espacial da precipitação interna ao longo do tempo.Universidade Federal de LavrasPrograma de Pós-Graduação em Recursos HídricosUFLAbrasilDepartamento de Recursos HídricosMello, Carlos Rogério deViola, Marcelo RibeiroTerra, Marcela de Castro Nunes SantosJunqueira Junior, José AlvesTonello, Kelly CristinaRodrigues, André Ferreira2022-03-21T18:32:15Z2022-03-21T18:32:15Z2022-03-212022-02-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfRODRIGUES, A. F. Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring. 2022. 181 p. Tese (Doutorado em Recursos Hídricos) – Universidade Federal de Lavras, Lavras, 2022.http://repositorio.ufla.br/jspui/handle/1/49536enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-04-10T14:37:42Zoai:localhost:1/49536Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-04-10T14:37:42Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring Insights into the canopy-rainfall interactions: new experiences from a long-term neotropical forest monitoring |
title |
Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring |
spellingShingle |
Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring Rodrigues, André Ferreira Interceptação da precipitação Balanço de energia Dinâmica florestal Florestas neotropicais Mata Atlântica Rainfall partitioning Atlantic forest Energy balance Forest dynamics Ciência do Solo |
title_short |
Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring |
title_full |
Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring |
title_fullStr |
Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring |
title_full_unstemmed |
Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring |
title_sort |
Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring |
author |
Rodrigues, André Ferreira |
author_facet |
Rodrigues, André Ferreira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mello, Carlos Rogério de Viola, Marcelo Ribeiro Terra, Marcela de Castro Nunes Santos Junqueira Junior, José Alves Tonello, Kelly Cristina |
dc.contributor.author.fl_str_mv |
Rodrigues, André Ferreira |
dc.subject.por.fl_str_mv |
Interceptação da precipitação Balanço de energia Dinâmica florestal Florestas neotropicais Mata Atlântica Rainfall partitioning Atlantic forest Energy balance Forest dynamics Ciência do Solo |
topic |
Interceptação da precipitação Balanço de energia Dinâmica florestal Florestas neotropicais Mata Atlântica Rainfall partitioning Atlantic forest Energy balance Forest dynamics Ciência do Solo |
description |
One of the most important processes in the hydrology of the critical zone is the rainfall interception by forest canopies. The canopy-rainfall interactions drive the water and nutrient cycles by redistributing rainfall in both time and space. This defines the fate of many hydrological processes, such as soil water dynamics, evapotranspiration, streamflow, spatiotemporal pattern of nutrients, and groundwater recharge. Although the canopy-rainfall interactions are well-known in many forests worldwide, there is still a knowledge gap in the effects of extreme weather (e.g., droughts) on these interactions. In this regard, the present study aims to improve the understanding regarding rainfall partitioning in a Neotropical forest during a prolonged drought. Rainfall partitioning starts with the canopy intercepting the rainfall and splitting it into stemflow and throughfall. Throughfall and stemflow is the amount of water that reaches the floor, known as net rainfall. A parcel of the intercepted water returns to the atmosphere by evaporation during and after the event. The canopy evaporation and throughfall are the most significant part of the rainfall partitioning, summing up to 99.5% in some tropical forests. Therefore, they are the subject of the present study. Physical models mimic reality and are key tools to advance the knowledge of complex physical processes such as rainfall interception. The Liu and Gash models have presented adequate performances to model the rainfall interception in different climates and forests. However, they had never been applied to drought conditions. The Liu model overcame the Gash model in the Neotropical forest because it better represents the stratified canopy. In non-drought periods, solar radiation and the energy stored in biomass and the air inside the forest are responsible for canopy evaporation. Besides the abovementioned energy sources, the energy advection from surrounding areas plays a more important role and increases canopy evaporation during droughts. Another important consideration is the spatial distribution of throughfall and how it behaves during droughts. The time stability index was considered to assess the behavior of the spatial variability of throughfall over time to highlight the likely influence of forest and weather dynamics on it. Misinterpretation of time stability of throughfall was observed in prior studies because the changes in forest structure and weather patterns had not been considered. Biomass, the dominance of some species, and tree occupation are forest characteristics driving the spatial distribution and time stability of throughfall. These structures change due to ecological succession or regenerating from a disturbance (e.g., droughts), which modify the spatial distribution of throughfall. Moreover, maximum rainfall intensities are different in drought periods, changing the canopy’s saturation/unsaturation processes, and therefore the time stability. In this sense, droughts modify the canopy-rainfall interactions by enhancing canopy evaporation and changing the spatial distribution of throughfall over time. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-21T18:32:15Z 2022-03-21T18:32:15Z 2022-03-21 2022-02-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
RODRIGUES, A. F. Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring. 2022. 181 p. Tese (Doutorado em Recursos Hídricos) – Universidade Federal de Lavras, Lavras, 2022. http://repositorio.ufla.br/jspui/handle/1/49536 |
identifier_str_mv |
RODRIGUES, A. F. Insights into the canopy-rainfall interactions: new experiences from a long-term Neotropical forest monitoring. 2022. 181 p. Tese (Doutorado em Recursos Hídricos) – Universidade Federal de Lavras, Lavras, 2022. |
url |
http://repositorio.ufla.br/jspui/handle/1/49536 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Recursos Hídricos UFLA brasil Departamento de Recursos Hídricos |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Recursos Hídricos UFLA brasil Departamento de Recursos Hídricos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439183779463168 |