Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry

Detalhes bibliográficos
Autor(a) principal: Dijair, Thaís Santos Branco
Data de Publicação: 2020
Outros Autores: Silva, Fernanda Magno, Teixeira, Anita Fernanda dos Santos, Silva, Sérgio Henrique Godinho, Guilherme, Luiz Roberto Guimarães, Curi, Nilton
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/43205
Resumo: Portable X-ray fluorescence (pXRF) spectrometry has been useful worldwide for determining soil elemental content under both field and laboratory conditions. However, the field results are influenced by several factors, including soil moisture (M), soil texture (T) and soil organic matter (SOM). Thus, the objective of this work was to create linear mathematical models for conversion of Al2O3, CaO, Fe, K2O, SiO2, V, Ti and Zr contents obtained by pXRF directly in field to those obtained under laboratory conditions, i.e., in air-dried fine earth (ADFE), using M, T and SOM as auxiliary variables, since they influence pXRF results. pXRF analyses in field were performed on 12 soil profiles with different parent materials. From them, 59 samples were collected and also analyzed in the laboratory in ADFE. pXRF field data were used alone or combined to M, T and SOM data as auxiliary variables to create linear regression models to predict pXRF ADFE results. The models accuracy was assessed by the leave-one-out cross-validation method. Except for light-weight elements, field results underestimated the total elemental contents compared with ADFE. Prediction models including T presented higher accuracy to predict Al2O3, SiO2, V, Ti and Zr, while the prediction of Fe and K2O contents was insensitive to the addition of the auxiliary variables. The relative improvement (RI) in the prediction models were greater in predictions of SiO2 (T+SOM: RI=22.29%), V (M+T: RI=18.90%) and Ti (T+SOM: RI=11.18%). This study demonstrates it is possible to correct field pXRF data through linear regression models.
id UFLA_52f74eae13df824156c942f7f64a1b56
oai_identifier_str oai:localhost:1/43205
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometryCorreção da determinação em campo dos teores de elementos em solos via espectrometria de fluorescência de raios-X portátilPortable X-ray fluorescence (pXRF)Soil moistureSoil textureSoil organic matterPrediction modelsFluorescência de raios-X portátil (pXRF)Umidade do soloTextura do soloMatéria orgânica do soloModelos de prediçãoPortable X-ray fluorescence (pXRF) spectrometry has been useful worldwide for determining soil elemental content under both field and laboratory conditions. However, the field results are influenced by several factors, including soil moisture (M), soil texture (T) and soil organic matter (SOM). Thus, the objective of this work was to create linear mathematical models for conversion of Al2O3, CaO, Fe, K2O, SiO2, V, Ti and Zr contents obtained by pXRF directly in field to those obtained under laboratory conditions, i.e., in air-dried fine earth (ADFE), using M, T and SOM as auxiliary variables, since they influence pXRF results. pXRF analyses in field were performed on 12 soil profiles with different parent materials. From them, 59 samples were collected and also analyzed in the laboratory in ADFE. pXRF field data were used alone or combined to M, T and SOM data as auxiliary variables to create linear regression models to predict pXRF ADFE results. The models accuracy was assessed by the leave-one-out cross-validation method. Except for light-weight elements, field results underestimated the total elemental contents compared with ADFE. Prediction models including T presented higher accuracy to predict Al2O3, SiO2, V, Ti and Zr, while the prediction of Fe and K2O contents was insensitive to the addition of the auxiliary variables. The relative improvement (RI) in the prediction models were greater in predictions of SiO2 (T+SOM: RI=22.29%), V (M+T: RI=18.90%) and Ti (T+SOM: RI=11.18%). This study demonstrates it is possible to correct field pXRF data through linear regression models.A espectrometria portátil de fluorescência de raios-X (pXRF) tem sido útil em todo o mundo para determinar o teor dos elementos no solo em condições de campo e de laboratório. No entanto, os resultados obtidos em campo podem ser influenciados por vários fatores, como umidade (U), textura (T) e matéria orgânica do solo (MOS). Assim, o objetivo deste trabalho foi criar modelos matemáticos lineares para a conversão dos teores dos elementos obtidos por pXRF em campo para resultados obtidos em laboratório, i.e., na Terra Fina Seca ao Ar (TFSA), utilizando U, T e MOS como variáveis auxiliares, uma vez que elas influenciam as leituras. As análises com pXRF foram realizadas em 12 perfis de solo com diferentes materiais de origem, seguidas por coleta de 59 amostras. Leituras com pXRF foram realizadas também em laboratório em amostras de TFSA. Os dados de pXRF obtidos em campo foram utilizados sozinhos ou combinados aos dados de U, T e MOS como variáveis auxiliares, para criar modelos de regressão linear para predição dos resultados de pXRF em TFSA. A acurácia dos modelos foi calculada pelo método leave-one-out cross-validation. À exceção de elementos mais leves, as leituras de campo com pXRF subestimaram o teor total dos elementos. Modelos de predição incluindo T apresentaram maior acurácia na predição de Al2O3, SiO2, V, Ti e Zr, enquanto a predição dos teores de Fe e K2O foi insensível à adição das variáveis auxiliares. A melhora relativa (MR) nos modelos de predição foi maior nas predições de SiO2 (T+MOS: MR = 22,29%), V (U+T: MR = 18,90%) e Ti (T+MOS: MR = 11,18%). Este trabalho demonstrou que é possível a correção dos dados de pXRF obtidos em campo através de modelos de regressão linear.Universidade Federal de Lavras2020-09-25T18:24:51Z2020-09-25T18:24:51Z2020-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfDIJAIR, T. S. B. et al. Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry. Ciência e Agrotecnologia, Lavras, v. 44, e002420, 2020. DOI: http://dx.doi.org/10.1590/1413-7054202044002420.http://repositorio.ufla.br/jspui/handle/1/43205Ciência e Agrotecnologiareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessDijair, Thaís Santos BrancoSilva, Fernanda MagnoTeixeira, Anita Fernanda dos SantosSilva, Sérgio Henrique GodinhoGuilherme, Luiz Roberto GuimarãesCuri, Niltoneng2020-09-25T18:25:19Zoai:localhost:1/43205Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2020-09-25T18:25:19Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
Correção da determinação em campo dos teores de elementos em solos via espectrometria de fluorescência de raios-X portátil
title Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
spellingShingle Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
Dijair, Thaís Santos Branco
Portable X-ray fluorescence (pXRF)
Soil moisture
Soil texture
Soil organic matter
Prediction models
Fluorescência de raios-X portátil (pXRF)
Umidade do solo
Textura do solo
Matéria orgânica do solo
Modelos de predição
title_short Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
title_full Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
title_fullStr Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
title_full_unstemmed Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
title_sort Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
author Dijair, Thaís Santos Branco
author_facet Dijair, Thaís Santos Branco
Silva, Fernanda Magno
Teixeira, Anita Fernanda dos Santos
Silva, Sérgio Henrique Godinho
Guilherme, Luiz Roberto Guimarães
Curi, Nilton
author_role author
author2 Silva, Fernanda Magno
Teixeira, Anita Fernanda dos Santos
Silva, Sérgio Henrique Godinho
Guilherme, Luiz Roberto Guimarães
Curi, Nilton
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Dijair, Thaís Santos Branco
Silva, Fernanda Magno
Teixeira, Anita Fernanda dos Santos
Silva, Sérgio Henrique Godinho
Guilherme, Luiz Roberto Guimarães
Curi, Nilton
dc.subject.por.fl_str_mv Portable X-ray fluorescence (pXRF)
Soil moisture
Soil texture
Soil organic matter
Prediction models
Fluorescência de raios-X portátil (pXRF)
Umidade do solo
Textura do solo
Matéria orgânica do solo
Modelos de predição
topic Portable X-ray fluorescence (pXRF)
Soil moisture
Soil texture
Soil organic matter
Prediction models
Fluorescência de raios-X portátil (pXRF)
Umidade do solo
Textura do solo
Matéria orgânica do solo
Modelos de predição
description Portable X-ray fluorescence (pXRF) spectrometry has been useful worldwide for determining soil elemental content under both field and laboratory conditions. However, the field results are influenced by several factors, including soil moisture (M), soil texture (T) and soil organic matter (SOM). Thus, the objective of this work was to create linear mathematical models for conversion of Al2O3, CaO, Fe, K2O, SiO2, V, Ti and Zr contents obtained by pXRF directly in field to those obtained under laboratory conditions, i.e., in air-dried fine earth (ADFE), using M, T and SOM as auxiliary variables, since they influence pXRF results. pXRF analyses in field were performed on 12 soil profiles with different parent materials. From them, 59 samples were collected and also analyzed in the laboratory in ADFE. pXRF field data were used alone or combined to M, T and SOM data as auxiliary variables to create linear regression models to predict pXRF ADFE results. The models accuracy was assessed by the leave-one-out cross-validation method. Except for light-weight elements, field results underestimated the total elemental contents compared with ADFE. Prediction models including T presented higher accuracy to predict Al2O3, SiO2, V, Ti and Zr, while the prediction of Fe and K2O contents was insensitive to the addition of the auxiliary variables. The relative improvement (RI) in the prediction models were greater in predictions of SiO2 (T+SOM: RI=22.29%), V (M+T: RI=18.90%) and Ti (T+SOM: RI=11.18%). This study demonstrates it is possible to correct field pXRF data through linear regression models.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-25T18:24:51Z
2020-09-25T18:24:51Z
2020-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv DIJAIR, T. S. B. et al. Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry. Ciência e Agrotecnologia, Lavras, v. 44, e002420, 2020. DOI: http://dx.doi.org/10.1590/1413-7054202044002420.
http://repositorio.ufla.br/jspui/handle/1/43205
identifier_str_mv DIJAIR, T. S. B. et al. Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry. Ciência e Agrotecnologia, Lavras, v. 44, e002420, 2020. DOI: http://dx.doi.org/10.1590/1413-7054202044002420.
url http://repositorio.ufla.br/jspui/handle/1/43205
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
publisher.none.fl_str_mv Universidade Federal de Lavras
dc.source.none.fl_str_mv Ciência e Agrotecnologia
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1807835076887576576