Data mining applied to feature selection methods for aboveground carbon stock modelling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/56516 |
Resumo: | The objective of this work was to apply the random forest (RF) algorithm to the modelling of the aboveground carbon (AGC) stock of a tropical forest by testing three feature selection procedures – recursive removal and the uniobjective and multiobjective genetic algorithms (GAs). The used database covered 1,007 plots sampled in the Rio Grande watershed, in the state of Minas Gerais state, Brazil, and 114 environmental variables (climatic, edaphic, geographic, terrain, and spectral). The best feature selection strategy – RF with multiobjective GA – reaches the minor root-square error of 17.75 Mg ha-1 with only four spectral variables – normalized difference moisture index, normalized burn ratio 2 correlation texture, treecover, and latent heat flux –, which represents a reduction of 96.5% in the size of the database. Feature selection strategies assist in obtaining a better RF performance, by improving the accuracy and reducing the volume of the data. Although the recursive removal and multiobjective GA showed a similar performance as feature selection strategies, the latter presents the smallest subset of variables, with the highest accuracy. The findings of this study highlight the importance of using near infrared, short wavelengths, and derived vegetation indices for the remote-sense-based estimation of AGC. The MODIS products show a significant relationship with the AGC stock and should be further explored by the scientific community for the modelling of this stock. |
id |
UFLA_57937e50c5a07a01fbc28f6f4944e8ba |
---|---|
oai_identifier_str |
oai:localhost:1/56516 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Data mining applied to feature selection methods for aboveground carbon stock modellingMineração de dados aplicada a métodos de seleção de variáveis para a modelagem de estoque de carbono acima do soloForest managementGenetic algorithmRandom forestManejo florestalAlgoritmo genéticoFloresta aleatóriaThe objective of this work was to apply the random forest (RF) algorithm to the modelling of the aboveground carbon (AGC) stock of a tropical forest by testing three feature selection procedures – recursive removal and the uniobjective and multiobjective genetic algorithms (GAs). The used database covered 1,007 plots sampled in the Rio Grande watershed, in the state of Minas Gerais state, Brazil, and 114 environmental variables (climatic, edaphic, geographic, terrain, and spectral). The best feature selection strategy – RF with multiobjective GA – reaches the minor root-square error of 17.75 Mg ha-1 with only four spectral variables – normalized difference moisture index, normalized burn ratio 2 correlation texture, treecover, and latent heat flux –, which represents a reduction of 96.5% in the size of the database. Feature selection strategies assist in obtaining a better RF performance, by improving the accuracy and reducing the volume of the data. Although the recursive removal and multiobjective GA showed a similar performance as feature selection strategies, the latter presents the smallest subset of variables, with the highest accuracy. The findings of this study highlight the importance of using near infrared, short wavelengths, and derived vegetation indices for the remote-sense-based estimation of AGC. The MODIS products show a significant relationship with the AGC stock and should be further explored by the scientific community for the modelling of this stock.O objetivo deste trabalho foi aplicar o algoritmo “random forest” (RF) à modelagem do estoque de carbono acima do solo (CAS) de uma floresta tropical, por meio da testagem de três procedimentos de seleção de variáveis: remoção recursiva e algoritmos genéticos (AGs) uniobjetivo e multiobjetivo. Os dados utilizados abrangeram 1.007 parcelas amostradas na bacia hidrográfica do Rio Grande, no estado de Minas Gerais, Brasil, e 114 variáveis ambientais (climáticas, edáficas, geográficas, de terreno e espectrais). A melhor estratégia de seleção de variáveis – a RF com AG multiobjetivo – chega ao menor erro quadrático de 17,75 Mg ha-1 com apenas quatro variáveis espectrais – índice de umidade por diferença normalizada, textura de correlação do índice de queimada por razão normalizada 2, cobertura arbórea e fluxo de calor latente –, o que representa redução de 96,5% no tamanho do banco de dados. As estratégias de seleção de variáveis ajudam a obter melhor desempenho da RF, ao melhorar a acurácia e reduzir o volume dos dados. Embora a remoção recursiva e o AG multiobjetivo mostrem desempenho semelhante como estratégias de seleção de variáveis, esta último apresenta menor subconjunto de variáveis, com maior precisão. As descobertas deste trabalho destacam a importância do uso de infravermelho próximo, comprimentos de onda curtos e índices de vegetação derivados para a estimativa de CAS baseada em sensoriamento remoto. Os produtos MODIS mostram relação significativa com o estoque de CAS e precisam ser melhor explorados pela comunidade científica para a modelagem deste estoque.Empresa Brasileira de Pesquisa Agropecuária (Embrapa)2023-04-05T18:22:13Z2023-04-05T18:22:13Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCARVALHO, M. C. et al. Data mining applied to feature selection methods for aboveground carbon stock modelling. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 57, p. 1-13, 2022. DOI: 10.1590/S1678-3921.pab2022.v57.03015.http://repositorio.ufla.br/jspui/handle/1/56516Pesquisa Agropecuária Brasileira (PAB)reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessCarvalho, Mônica CanaanGomide, Lucas RezendeScolforo, José Roberto SoaresPáscoa, Kalill José Viana daAraújo, Laís AlmeidaLopes, Isáira Leite eeng2023-04-05T18:22:13Zoai:localhost:1/56516Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-04-05T18:22:13Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Data mining applied to feature selection methods for aboveground carbon stock modelling Mineração de dados aplicada a métodos de seleção de variáveis para a modelagem de estoque de carbono acima do solo |
title |
Data mining applied to feature selection methods for aboveground carbon stock modelling |
spellingShingle |
Data mining applied to feature selection methods for aboveground carbon stock modelling Carvalho, Mônica Canaan Forest management Genetic algorithm Random forest Manejo florestal Algoritmo genético Floresta aleatória |
title_short |
Data mining applied to feature selection methods for aboveground carbon stock modelling |
title_full |
Data mining applied to feature selection methods for aboveground carbon stock modelling |
title_fullStr |
Data mining applied to feature selection methods for aboveground carbon stock modelling |
title_full_unstemmed |
Data mining applied to feature selection methods for aboveground carbon stock modelling |
title_sort |
Data mining applied to feature selection methods for aboveground carbon stock modelling |
author |
Carvalho, Mônica Canaan |
author_facet |
Carvalho, Mônica Canaan Gomide, Lucas Rezende Scolforo, José Roberto Soares Páscoa, Kalill José Viana da Araújo, Laís Almeida Lopes, Isáira Leite e |
author_role |
author |
author2 |
Gomide, Lucas Rezende Scolforo, José Roberto Soares Páscoa, Kalill José Viana da Araújo, Laís Almeida Lopes, Isáira Leite e |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Carvalho, Mônica Canaan Gomide, Lucas Rezende Scolforo, José Roberto Soares Páscoa, Kalill José Viana da Araújo, Laís Almeida Lopes, Isáira Leite e |
dc.subject.por.fl_str_mv |
Forest management Genetic algorithm Random forest Manejo florestal Algoritmo genético Floresta aleatória |
topic |
Forest management Genetic algorithm Random forest Manejo florestal Algoritmo genético Floresta aleatória |
description |
The objective of this work was to apply the random forest (RF) algorithm to the modelling of the aboveground carbon (AGC) stock of a tropical forest by testing three feature selection procedures – recursive removal and the uniobjective and multiobjective genetic algorithms (GAs). The used database covered 1,007 plots sampled in the Rio Grande watershed, in the state of Minas Gerais state, Brazil, and 114 environmental variables (climatic, edaphic, geographic, terrain, and spectral). The best feature selection strategy – RF with multiobjective GA – reaches the minor root-square error of 17.75 Mg ha-1 with only four spectral variables – normalized difference moisture index, normalized burn ratio 2 correlation texture, treecover, and latent heat flux –, which represents a reduction of 96.5% in the size of the database. Feature selection strategies assist in obtaining a better RF performance, by improving the accuracy and reducing the volume of the data. Although the recursive removal and multiobjective GA showed a similar performance as feature selection strategies, the latter presents the smallest subset of variables, with the highest accuracy. The findings of this study highlight the importance of using near infrared, short wavelengths, and derived vegetation indices for the remote-sense-based estimation of AGC. The MODIS products show a significant relationship with the AGC stock and should be further explored by the scientific community for the modelling of this stock. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2023-04-05T18:22:13Z 2023-04-05T18:22:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CARVALHO, M. C. et al. Data mining applied to feature selection methods for aboveground carbon stock modelling. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 57, p. 1-13, 2022. DOI: 10.1590/S1678-3921.pab2022.v57.03015. http://repositorio.ufla.br/jspui/handle/1/56516 |
identifier_str_mv |
CARVALHO, M. C. et al. Data mining applied to feature selection methods for aboveground carbon stock modelling. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 57, p. 1-13, 2022. DOI: 10.1590/S1678-3921.pab2022.v57.03015. |
url |
http://repositorio.ufla.br/jspui/handle/1/56516 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
publisher.none.fl_str_mv |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
dc.source.none.fl_str_mv |
Pesquisa Agropecuária Brasileira (PAB) reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1823242149681954816 |