Development, sensitivity and uncertainty analysis of LASH model

Detalhes bibliográficos
Autor(a) principal: Beskow, Samuel
Data de Publicação: 2011
Outros Autores: Mello, Carlos Rogério de, Norton, Lloyd Darrell
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/15624
Resumo: Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity regarding data base requirements, as well as, many calibration parameters. This has brought serious difficulties for applying them in watersheds where there is scarcity of data. The development of the Lavras Simulation of Hydrology (LASH) in a GIS framework is described in this study, which focuses on its main components, parameters, and capabilities. Coupled with LASH, sensitivity analysis, parameter range reduction, and uncertainty analysis were performed prior to the calibration effort by using specific techniques (Morris method, Monte Carlo simulation and a Generalized Likelihood Uncertainty Estimation -GLUE) with a data base from a Brazilian Tropical Experimental Watershed (32 km2), in order to predict streamflow on a daily basis. LASH is a simple deterministic and spatially distributed model using long-term data sets, and a few maps to predict streamflow at a watershed outlet. We were able to identify the most sensitive parameters which are associated with the base flow and surface runoff components, using a reference watershed. Using a conservative threshold, two parameters had their range of values reduced, thus resulting in outputs closer to measured values and facilitating automatic calibration of the model with less required iterations. GLUE was found to be an efficient method to analyze uncertainties related to the prediction of mean daily streamflow in the watershed.
id UFLA_5b7c695315634ad5f91df99f023e6898
oai_identifier_str oai:localhost:1/15624
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Development, sensitivity and uncertainty analysis of LASH modelDesenvolvimento, sensibilidade e análise de incertezas do modelo LASHHydrology – Mathematical models – ModelingHydrology – Statistical methodsMonte Carlo simulationMorris methodHidrologia – Modelos matemáticos – ModelagemHidrologia – Métodos estatísticosSimulação de Monte CarloMétodo de MorrisLavras Simulation of Hydrology (LASH)Generalized Likelihood Uncertainty Equation (GLUE)Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity regarding data base requirements, as well as, many calibration parameters. This has brought serious difficulties for applying them in watersheds where there is scarcity of data. The development of the Lavras Simulation of Hydrology (LASH) in a GIS framework is described in this study, which focuses on its main components, parameters, and capabilities. Coupled with LASH, sensitivity analysis, parameter range reduction, and uncertainty analysis were performed prior to the calibration effort by using specific techniques (Morris method, Monte Carlo simulation and a Generalized Likelihood Uncertainty Estimation -GLUE) with a data base from a Brazilian Tropical Experimental Watershed (32 km2), in order to predict streamflow on a daily basis. LASH is a simple deterministic and spatially distributed model using long-term data sets, and a few maps to predict streamflow at a watershed outlet. We were able to identify the most sensitive parameters which are associated with the base flow and surface runoff components, using a reference watershed. Using a conservative threshold, two parameters had their range of values reduced, thus resulting in outputs closer to measured values and facilitating automatic calibration of the model with less required iterations. GLUE was found to be an efficient method to analyze uncertainties related to the prediction of mean daily streamflow in the watershed.Diversos modelos hidrológicos têm sido desenvolvidos no intuito de auxiliar na gestão de recursos naturais em todo o mundo. Porém, a maioria desses modelos apresenta um alto grau de complexidade em relação tanto à necessidade de base de dados, quanto ao número de parâmetros de calibração. Em virtude desses fatores, se torna difícil a aplicação em bacias hidrográficas que têm bases de dados reduzidas. Neste artigo é descrito o desenvolvimento do modelo Lavras Simulation of Hydrology (LASH) em uma estrutura de SIG, buscando enfatizar seus principais componentes e parâmetros, bem como suas potencialidades. Além da descrição do modelo, também foram realizadas a análise de sensibilidade, a redução do intervalo de parâmetros e a análise de incertezas, anteriormente à fase de calibração, utilizando metodologias específicas (método de Morris, simulação de Monte Carlo e o método Generalized Likelihood Uncertainty Equation (GLUE)), com a base de dados de uma bacia hidrográfica experimental tropical brasileira (32 km²), a fim de simular a vazão total média diária. O LASH é um modelo classificado como determinístico e distribuído, que utiliza dados de longo termo e poucos mapas para predizer vazão na seção de controle de bacias hidrográficas. Foi possível identificar os parâmetros mais sensíveis do modelo para a bacia hidrográfica de referência, os quais estão associados com os componentes de escoamento de base e superficial direto. Em função do limiar conservador utilizado neste estudo, foram reduzidos os intervalos de dois parâmetros, dessa forma gerando resultados simulados mais realísticos e também facilitando a calibração automática do modelo com um menor número de iterações necessárias. O método da GLUE mostrou ser eficiente frente à análise de incertezas relacionadas à predição de vazão na bacia de estudo.Universidade de São Paulo: Escola Superior de Agricultura "Luiz de Queiroz"2017-11-06T15:37:42Z2017-11-06T15:37:42Z2011-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfBESKOW, S.; MELLO, C. R. de; NORTON, L. D. Development, sensitivity and uncertainty analysis of LASH model. Scientia Agricola, Piracicaba, v. 68, n. 3, p. 265-274, May/June 2011.http://repositorio.ufla.br/jspui/handle/1/15624Scientia Agricolareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessBeskow, SamuelMello, Carlos Rogério deNorton, Lloyd Darrelleng2023-05-03T11:57:40Zoai:localhost:1/15624Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-03T11:57:40Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Development, sensitivity and uncertainty analysis of LASH model
Desenvolvimento, sensibilidade e análise de incertezas do modelo LASH
title Development, sensitivity and uncertainty analysis of LASH model
spellingShingle Development, sensitivity and uncertainty analysis of LASH model
Beskow, Samuel
Hydrology – Mathematical models – Modeling
Hydrology – Statistical methods
Monte Carlo simulation
Morris method
Hidrologia – Modelos matemáticos – Modelagem
Hidrologia – Métodos estatísticos
Simulação de Monte Carlo
Método de Morris
Lavras Simulation of Hydrology (LASH)
Generalized Likelihood Uncertainty Equation (GLUE)
title_short Development, sensitivity and uncertainty analysis of LASH model
title_full Development, sensitivity and uncertainty analysis of LASH model
title_fullStr Development, sensitivity and uncertainty analysis of LASH model
title_full_unstemmed Development, sensitivity and uncertainty analysis of LASH model
title_sort Development, sensitivity and uncertainty analysis of LASH model
author Beskow, Samuel
author_facet Beskow, Samuel
Mello, Carlos Rogério de
Norton, Lloyd Darrell
author_role author
author2 Mello, Carlos Rogério de
Norton, Lloyd Darrell
author2_role author
author
dc.contributor.author.fl_str_mv Beskow, Samuel
Mello, Carlos Rogério de
Norton, Lloyd Darrell
dc.subject.por.fl_str_mv Hydrology – Mathematical models – Modeling
Hydrology – Statistical methods
Monte Carlo simulation
Morris method
Hidrologia – Modelos matemáticos – Modelagem
Hidrologia – Métodos estatísticos
Simulação de Monte Carlo
Método de Morris
Lavras Simulation of Hydrology (LASH)
Generalized Likelihood Uncertainty Equation (GLUE)
topic Hydrology – Mathematical models – Modeling
Hydrology – Statistical methods
Monte Carlo simulation
Morris method
Hidrologia – Modelos matemáticos – Modelagem
Hidrologia – Métodos estatísticos
Simulação de Monte Carlo
Método de Morris
Lavras Simulation of Hydrology (LASH)
Generalized Likelihood Uncertainty Equation (GLUE)
description Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity regarding data base requirements, as well as, many calibration parameters. This has brought serious difficulties for applying them in watersheds where there is scarcity of data. The development of the Lavras Simulation of Hydrology (LASH) in a GIS framework is described in this study, which focuses on its main components, parameters, and capabilities. Coupled with LASH, sensitivity analysis, parameter range reduction, and uncertainty analysis were performed prior to the calibration effort by using specific techniques (Morris method, Monte Carlo simulation and a Generalized Likelihood Uncertainty Estimation -GLUE) with a data base from a Brazilian Tropical Experimental Watershed (32 km2), in order to predict streamflow on a daily basis. LASH is a simple deterministic and spatially distributed model using long-term data sets, and a few maps to predict streamflow at a watershed outlet. We were able to identify the most sensitive parameters which are associated with the base flow and surface runoff components, using a reference watershed. Using a conservative threshold, two parameters had their range of values reduced, thus resulting in outputs closer to measured values and facilitating automatic calibration of the model with less required iterations. GLUE was found to be an efficient method to analyze uncertainties related to the prediction of mean daily streamflow in the watershed.
publishDate 2011
dc.date.none.fl_str_mv 2011-05
2017-11-06T15:37:42Z
2017-11-06T15:37:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv BESKOW, S.; MELLO, C. R. de; NORTON, L. D. Development, sensitivity and uncertainty analysis of LASH model. Scientia Agricola, Piracicaba, v. 68, n. 3, p. 265-274, May/June 2011.
http://repositorio.ufla.br/jspui/handle/1/15624
identifier_str_mv BESKOW, S.; MELLO, C. R. de; NORTON, L. D. Development, sensitivity and uncertainty analysis of LASH model. Scientia Agricola, Piracicaba, v. 68, n. 3, p. 265-274, May/June 2011.
url http://repositorio.ufla.br/jspui/handle/1/15624
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de São Paulo: Escola Superior de Agricultura "Luiz de Queiroz"
publisher.none.fl_str_mv Universidade de São Paulo: Escola Superior de Agricultura "Luiz de Queiroz"
dc.source.none.fl_str_mv Scientia Agricola
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439259813806080