Development, sensitivity and uncertainty analysis of LASH model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/15624 |
Resumo: | Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity regarding data base requirements, as well as, many calibration parameters. This has brought serious difficulties for applying them in watersheds where there is scarcity of data. The development of the Lavras Simulation of Hydrology (LASH) in a GIS framework is described in this study, which focuses on its main components, parameters, and capabilities. Coupled with LASH, sensitivity analysis, parameter range reduction, and uncertainty analysis were performed prior to the calibration effort by using specific techniques (Morris method, Monte Carlo simulation and a Generalized Likelihood Uncertainty Estimation -GLUE) with a data base from a Brazilian Tropical Experimental Watershed (32 km2), in order to predict streamflow on a daily basis. LASH is a simple deterministic and spatially distributed model using long-term data sets, and a few maps to predict streamflow at a watershed outlet. We were able to identify the most sensitive parameters which are associated with the base flow and surface runoff components, using a reference watershed. Using a conservative threshold, two parameters had their range of values reduced, thus resulting in outputs closer to measured values and facilitating automatic calibration of the model with less required iterations. GLUE was found to be an efficient method to analyze uncertainties related to the prediction of mean daily streamflow in the watershed. |
id |
UFLA_5b7c695315634ad5f91df99f023e6898 |
---|---|
oai_identifier_str |
oai:localhost:1/15624 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Development, sensitivity and uncertainty analysis of LASH modelDesenvolvimento, sensibilidade e análise de incertezas do modelo LASHHydrology – Mathematical models – ModelingHydrology – Statistical methodsMonte Carlo simulationMorris methodHidrologia – Modelos matemáticos – ModelagemHidrologia – Métodos estatísticosSimulação de Monte CarloMétodo de MorrisLavras Simulation of Hydrology (LASH)Generalized Likelihood Uncertainty Equation (GLUE)Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity regarding data base requirements, as well as, many calibration parameters. This has brought serious difficulties for applying them in watersheds where there is scarcity of data. The development of the Lavras Simulation of Hydrology (LASH) in a GIS framework is described in this study, which focuses on its main components, parameters, and capabilities. Coupled with LASH, sensitivity analysis, parameter range reduction, and uncertainty analysis were performed prior to the calibration effort by using specific techniques (Morris method, Monte Carlo simulation and a Generalized Likelihood Uncertainty Estimation -GLUE) with a data base from a Brazilian Tropical Experimental Watershed (32 km2), in order to predict streamflow on a daily basis. LASH is a simple deterministic and spatially distributed model using long-term data sets, and a few maps to predict streamflow at a watershed outlet. We were able to identify the most sensitive parameters which are associated with the base flow and surface runoff components, using a reference watershed. Using a conservative threshold, two parameters had their range of values reduced, thus resulting in outputs closer to measured values and facilitating automatic calibration of the model with less required iterations. GLUE was found to be an efficient method to analyze uncertainties related to the prediction of mean daily streamflow in the watershed.Diversos modelos hidrológicos têm sido desenvolvidos no intuito de auxiliar na gestão de recursos naturais em todo o mundo. Porém, a maioria desses modelos apresenta um alto grau de complexidade em relação tanto à necessidade de base de dados, quanto ao número de parâmetros de calibração. Em virtude desses fatores, se torna difícil a aplicação em bacias hidrográficas que têm bases de dados reduzidas. Neste artigo é descrito o desenvolvimento do modelo Lavras Simulation of Hydrology (LASH) em uma estrutura de SIG, buscando enfatizar seus principais componentes e parâmetros, bem como suas potencialidades. Além da descrição do modelo, também foram realizadas a análise de sensibilidade, a redução do intervalo de parâmetros e a análise de incertezas, anteriormente à fase de calibração, utilizando metodologias específicas (método de Morris, simulação de Monte Carlo e o método Generalized Likelihood Uncertainty Equation (GLUE)), com a base de dados de uma bacia hidrográfica experimental tropical brasileira (32 km²), a fim de simular a vazão total média diária. O LASH é um modelo classificado como determinístico e distribuído, que utiliza dados de longo termo e poucos mapas para predizer vazão na seção de controle de bacias hidrográficas. Foi possível identificar os parâmetros mais sensíveis do modelo para a bacia hidrográfica de referência, os quais estão associados com os componentes de escoamento de base e superficial direto. Em função do limiar conservador utilizado neste estudo, foram reduzidos os intervalos de dois parâmetros, dessa forma gerando resultados simulados mais realísticos e também facilitando a calibração automática do modelo com um menor número de iterações necessárias. O método da GLUE mostrou ser eficiente frente à análise de incertezas relacionadas à predição de vazão na bacia de estudo.Universidade de São Paulo: Escola Superior de Agricultura "Luiz de Queiroz"2017-11-06T15:37:42Z2017-11-06T15:37:42Z2011-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfBESKOW, S.; MELLO, C. R. de; NORTON, L. D. Development, sensitivity and uncertainty analysis of LASH model. Scientia Agricola, Piracicaba, v. 68, n. 3, p. 265-274, May/June 2011.http://repositorio.ufla.br/jspui/handle/1/15624Scientia Agricolareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessBeskow, SamuelMello, Carlos Rogério deNorton, Lloyd Darrelleng2023-05-03T11:57:40Zoai:localhost:1/15624Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-03T11:57:40Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Development, sensitivity and uncertainty analysis of LASH model Desenvolvimento, sensibilidade e análise de incertezas do modelo LASH |
title |
Development, sensitivity and uncertainty analysis of LASH model |
spellingShingle |
Development, sensitivity and uncertainty analysis of LASH model Beskow, Samuel Hydrology – Mathematical models – Modeling Hydrology – Statistical methods Monte Carlo simulation Morris method Hidrologia – Modelos matemáticos – Modelagem Hidrologia – Métodos estatísticos Simulação de Monte Carlo Método de Morris Lavras Simulation of Hydrology (LASH) Generalized Likelihood Uncertainty Equation (GLUE) |
title_short |
Development, sensitivity and uncertainty analysis of LASH model |
title_full |
Development, sensitivity and uncertainty analysis of LASH model |
title_fullStr |
Development, sensitivity and uncertainty analysis of LASH model |
title_full_unstemmed |
Development, sensitivity and uncertainty analysis of LASH model |
title_sort |
Development, sensitivity and uncertainty analysis of LASH model |
author |
Beskow, Samuel |
author_facet |
Beskow, Samuel Mello, Carlos Rogério de Norton, Lloyd Darrell |
author_role |
author |
author2 |
Mello, Carlos Rogério de Norton, Lloyd Darrell |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Beskow, Samuel Mello, Carlos Rogério de Norton, Lloyd Darrell |
dc.subject.por.fl_str_mv |
Hydrology – Mathematical models – Modeling Hydrology – Statistical methods Monte Carlo simulation Morris method Hidrologia – Modelos matemáticos – Modelagem Hidrologia – Métodos estatísticos Simulação de Monte Carlo Método de Morris Lavras Simulation of Hydrology (LASH) Generalized Likelihood Uncertainty Equation (GLUE) |
topic |
Hydrology – Mathematical models – Modeling Hydrology – Statistical methods Monte Carlo simulation Morris method Hidrologia – Modelos matemáticos – Modelagem Hidrologia – Métodos estatísticos Simulação de Monte Carlo Método de Morris Lavras Simulation of Hydrology (LASH) Generalized Likelihood Uncertainty Equation (GLUE) |
description |
Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity regarding data base requirements, as well as, many calibration parameters. This has brought serious difficulties for applying them in watersheds where there is scarcity of data. The development of the Lavras Simulation of Hydrology (LASH) in a GIS framework is described in this study, which focuses on its main components, parameters, and capabilities. Coupled with LASH, sensitivity analysis, parameter range reduction, and uncertainty analysis were performed prior to the calibration effort by using specific techniques (Morris method, Monte Carlo simulation and a Generalized Likelihood Uncertainty Estimation -GLUE) with a data base from a Brazilian Tropical Experimental Watershed (32 km2), in order to predict streamflow on a daily basis. LASH is a simple deterministic and spatially distributed model using long-term data sets, and a few maps to predict streamflow at a watershed outlet. We were able to identify the most sensitive parameters which are associated with the base flow and surface runoff components, using a reference watershed. Using a conservative threshold, two parameters had their range of values reduced, thus resulting in outputs closer to measured values and facilitating automatic calibration of the model with less required iterations. GLUE was found to be an efficient method to analyze uncertainties related to the prediction of mean daily streamflow in the watershed. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-05 2017-11-06T15:37:42Z 2017-11-06T15:37:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
BESKOW, S.; MELLO, C. R. de; NORTON, L. D. Development, sensitivity and uncertainty analysis of LASH model. Scientia Agricola, Piracicaba, v. 68, n. 3, p. 265-274, May/June 2011. http://repositorio.ufla.br/jspui/handle/1/15624 |
identifier_str_mv |
BESKOW, S.; MELLO, C. R. de; NORTON, L. D. Development, sensitivity and uncertainty analysis of LASH model. Scientia Agricola, Piracicaba, v. 68, n. 3, p. 265-274, May/June 2011. |
url |
http://repositorio.ufla.br/jspui/handle/1/15624 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de São Paulo: Escola Superior de Agricultura "Luiz de Queiroz" |
publisher.none.fl_str_mv |
Universidade de São Paulo: Escola Superior de Agricultura "Luiz de Queiroz" |
dc.source.none.fl_str_mv |
Scientia Agricola reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439259813806080 |