Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/48721 |
Resumo: | The financial market is the trading environment for various financial instruments, including stocks, bonds, currencies and derivatives. This market is of vital importance for the proper functioning of capitalist economies. An important segment of the financial market is the securities market, which enables speculation on futures contracts. In Brazil, the mini Ibovespa futures contract (WIN) is the financial asset most traded by individuals in the intraday trading modality (daytrade). Traders and investors who carry out purchase and sale operations in this market face numerous challenges that make their task difficult at the time of decision making. These challenges can affect both more experienced investors and beginners in this market. Most studies available in the literature employ conventional statistical and econometric approaches to try to predict the future price of a given financial asset through regression analysis. Therefore, there is a lack of research in the field of developing models dedicated to predicting the direction of price, that is, treating the problem as one of classification. In this context, this work proposes an artificial intelligence model based on SVMOne Class Artificial Neural Networks (ANN), which the proposal is to predict the direction of the price of the Bovespa Index (WIN) futures contract in a 5 (five) minute graph time. The main differential of this work compared to those available in the literature is the use of the SVMOne Class or the Savitzky-Golay filter. Another highlight is the validation of results via backtesting, using an automated trading system for the financial market called Expert Advisor (EA) developed on the free MetaTrader5 (MT5) platform. Backtesting allowed to obtain metrics in a simulation environment with real data from the financial market. The results obtained from the backtesting are more realistic and, therefore, differ from the results achieved only by analyzing the assertiveness of the AI model, which presented an average rate of 60.22% of assertiveness in the predictions. This analysis served to prove the importance of validating AI models by applying backtesting systems to analyze the results. |
id |
UFLA_5f224d78cf891ce1d5fa583ba35e303e |
---|---|
oai_identifier_str |
oai:localhost:1/48721 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNAInvestment robot development for day trade based on SVM one class and RNAMercado financeiroRedes neurais artificiaisSavitzky-GolayMetaTrader5Expert advisorDay tradeSVM One ClassFinancial marketArtificial neural networksEngenharia de SoftwareThe financial market is the trading environment for various financial instruments, including stocks, bonds, currencies and derivatives. This market is of vital importance for the proper functioning of capitalist economies. An important segment of the financial market is the securities market, which enables speculation on futures contracts. In Brazil, the mini Ibovespa futures contract (WIN) is the financial asset most traded by individuals in the intraday trading modality (daytrade). Traders and investors who carry out purchase and sale operations in this market face numerous challenges that make their task difficult at the time of decision making. These challenges can affect both more experienced investors and beginners in this market. Most studies available in the literature employ conventional statistical and econometric approaches to try to predict the future price of a given financial asset through regression analysis. Therefore, there is a lack of research in the field of developing models dedicated to predicting the direction of price, that is, treating the problem as one of classification. In this context, this work proposes an artificial intelligence model based on SVMOne Class Artificial Neural Networks (ANN), which the proposal is to predict the direction of the price of the Bovespa Index (WIN) futures contract in a 5 (five) minute graph time. The main differential of this work compared to those available in the literature is the use of the SVMOne Class or the Savitzky-Golay filter. Another highlight is the validation of results via backtesting, using an automated trading system for the financial market called Expert Advisor (EA) developed on the free MetaTrader5 (MT5) platform. Backtesting allowed to obtain metrics in a simulation environment with real data from the financial market. The results obtained from the backtesting are more realistic and, therefore, differ from the results achieved only by analyzing the assertiveness of the AI model, which presented an average rate of 60.22% of assertiveness in the predictions. This analysis served to prove the importance of validating AI models by applying backtesting systems to analyze the results.O mercado financeiro é o ambiente de negociação de diversos instrumentos financeiros, incluindo ações, títulos, moedas e derivativos. Este mercado é de vital importância para o bom funcionamento das economias capitalistas. Um segmento importante do mercado financeiro é o mercado de valores mobiliários, que possibilita a especulação sobre contratos futuros. No Brasil o minicontrato futuro de Ibovespa (WIN) é o ativo financeiro mais negociado por pessoas físicas na modalidade de negociação intradiário (daytrade). Traders e investidores que realizam operações de compra e venda neste mercado, encontram inúmeros desafios que dificultam a tarefa no momento da tomada de decisão. Desafios estes que podem afetar tanto os investidores mais experientes quanto os iniciantes neste mercado. A maioria dos estudos disponíveis na literatura empregam abordagens estatísticas e econométricas convencionais para tentar prever o preço futuro de determinado ativo financeiro por meio de análise de regressão. Observa-se então, uma carência de pesquisas no campo de desenvolvimento de modelos dedicados a previsão da direção do preço, ou seja, tratar o problema como sendo de classificação. Neste contexto, este trabalho propõe um modelo de inteligência artificial baseado em SVM One Class e Redes Neurais Artificiais (RNA), o qual a proposta é prever a direção do preço do contrato futuro do índice Bovespa (WIN) no tempo gráfico de 5 (cinco) minutos. Os principais diferenciais deste trabalho comparado com os disponíveis na literatura, está no uso do SVM One Class e o filtro Savitzky-Golay. Outro ponto de destaque consiste na validação dos resultados via backtesting, utilizando um sistema de negociação automatizado para o mercado financeiro denominado de Expert Advisor (EA) desenvolvido na plataforma gratuita MetaTrader5 (MT5). O backtesting permitiu obter métricas em ambiente de simulação com os dados reais do mercado financeiro. Os resultados obtidos do backtesting são mais realistas e por isso divergem dos resultados alcançados apenas analisando a assertividade do modelo de IA que apresentou uma taxa média de 60,22% de assertividade das previsões. Esta análise serviu para provar a importância da validação de modelos de IA aplicando sistemas de backtesting para analise dos resultados.Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia de Sistemas e AutomaçãoUFLAbrasilDepartamento de EngenhariaFerreira, Danton DiegoFerreira, Danton DiegoLacerda, Wilian SoaresPimenta, AlexandreZacaroni, Rodrigo Menezes Sobral2021-12-22T16:31:05Z2021-12-22T16:31:05Z2021-12-222021-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfZACARONI, R. M. S. Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA. 2021. 103 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) – Universidade Federal de Lavras, Lavras, 2021.http://repositorio.ufla.br/jspui/handle/1/48721porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-05-02T12:40:22Zoai:localhost:1/48721Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-02T12:40:22Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA Investment robot development for day trade based on SVM one class and RNA |
title |
Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA |
spellingShingle |
Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA Zacaroni, Rodrigo Menezes Sobral Mercado financeiro Redes neurais artificiais Savitzky-Golay MetaTrader5 Expert advisor Day trade SVM One Class Financial market Artificial neural networks Engenharia de Software |
title_short |
Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA |
title_full |
Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA |
title_fullStr |
Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA |
title_full_unstemmed |
Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA |
title_sort |
Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA |
author |
Zacaroni, Rodrigo Menezes Sobral |
author_facet |
Zacaroni, Rodrigo Menezes Sobral |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferreira, Danton Diego Ferreira, Danton Diego Lacerda, Wilian Soares Pimenta, Alexandre |
dc.contributor.author.fl_str_mv |
Zacaroni, Rodrigo Menezes Sobral |
dc.subject.por.fl_str_mv |
Mercado financeiro Redes neurais artificiais Savitzky-Golay MetaTrader5 Expert advisor Day trade SVM One Class Financial market Artificial neural networks Engenharia de Software |
topic |
Mercado financeiro Redes neurais artificiais Savitzky-Golay MetaTrader5 Expert advisor Day trade SVM One Class Financial market Artificial neural networks Engenharia de Software |
description |
The financial market is the trading environment for various financial instruments, including stocks, bonds, currencies and derivatives. This market is of vital importance for the proper functioning of capitalist economies. An important segment of the financial market is the securities market, which enables speculation on futures contracts. In Brazil, the mini Ibovespa futures contract (WIN) is the financial asset most traded by individuals in the intraday trading modality (daytrade). Traders and investors who carry out purchase and sale operations in this market face numerous challenges that make their task difficult at the time of decision making. These challenges can affect both more experienced investors and beginners in this market. Most studies available in the literature employ conventional statistical and econometric approaches to try to predict the future price of a given financial asset through regression analysis. Therefore, there is a lack of research in the field of developing models dedicated to predicting the direction of price, that is, treating the problem as one of classification. In this context, this work proposes an artificial intelligence model based on SVMOne Class Artificial Neural Networks (ANN), which the proposal is to predict the direction of the price of the Bovespa Index (WIN) futures contract in a 5 (five) minute graph time. The main differential of this work compared to those available in the literature is the use of the SVMOne Class or the Savitzky-Golay filter. Another highlight is the validation of results via backtesting, using an automated trading system for the financial market called Expert Advisor (EA) developed on the free MetaTrader5 (MT5) platform. Backtesting allowed to obtain metrics in a simulation environment with real data from the financial market. The results obtained from the backtesting are more realistic and, therefore, differ from the results achieved only by analyzing the assertiveness of the AI model, which presented an average rate of 60.22% of assertiveness in the predictions. This analysis served to prove the importance of validating AI models by applying backtesting systems to analyze the results. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-22T16:31:05Z 2021-12-22T16:31:05Z 2021-12-22 2021-12-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ZACARONI, R. M. S. Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA. 2021. 103 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) – Universidade Federal de Lavras, Lavras, 2021. http://repositorio.ufla.br/jspui/handle/1/48721 |
identifier_str_mv |
ZACARONI, R. M. S. Desenvolvimento de robô de investimento para day trade baseado em SVM One Class e RNA. 2021. 103 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) – Universidade Federal de Lavras, Lavras, 2021. |
url |
http://repositorio.ufla.br/jspui/handle/1/48721 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Engenharia de Sistemas e Automação UFLA brasil Departamento de Engenharia |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Engenharia de Sistemas e Automação UFLA brasil Departamento de Engenharia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439172130832384 |