Using data mining to identify factors that influence the degree of leg injuries in broilers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/11682 |
Resumo: | Locomotor problems prevent the bird to move freely, jeopardizing the welfare and productivity, besides generating injuries on the legs of chickens. The objective of this study was to evaluate the influence of age, use of vitamin D, the asymmetry of limbs and gait score, the degree of leg injuries in broilers, using data mining. The analysis was performed on a data set obtained from a field experiment in which it was used two groups of birds with 30 birds each, a control group and one treated with vitamin D. It was evaluated the gait score, the asymmetry between the right and left toes, and the degree of leg injuries. The Weka ® software was used in data mining. In particular, C4.5 algorithm (also known as J48 in Weka environment) was used for the generation of a decision tree. The results showed that age is the factor that most influences the degree of leg injuries and that the data from assessments of gait score were not reliable to estimate leg weakness in broilers. |
id |
UFLA_5f2477cda07ef02d9e2a707c6750979d |
---|---|
oai_identifier_str |
oai:localhost:1/11682 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Using data mining to identify factors that influence the degree of leg injuries in broilersUso de mineração de dados para identificação de fatores que influenciam o grau de lesões de perna em frangos de corteÁrvore de decisãoAviculturaGait scoreDecision treesAvicultureLocomotor problems prevent the bird to move freely, jeopardizing the welfare and productivity, besides generating injuries on the legs of chickens. The objective of this study was to evaluate the influence of age, use of vitamin D, the asymmetry of limbs and gait score, the degree of leg injuries in broilers, using data mining. The analysis was performed on a data set obtained from a field experiment in which it was used two groups of birds with 30 birds each, a control group and one treated with vitamin D. It was evaluated the gait score, the asymmetry between the right and left toes, and the degree of leg injuries. The Weka ® software was used in data mining. In particular, C4.5 algorithm (also known as J48 in Weka environment) was used for the generation of a decision tree. The results showed that age is the factor that most influences the degree of leg injuries and that the data from assessments of gait score were not reliable to estimate leg weakness in broilers.Problemas locomotores impedem a ave de se movimentar livremente, prejudicando o bem-estar e a produtividade, além de gerarem lesões nas pernas dos frangos. O objetivo deste trabalho foi avaliar a influência da idade, do uso de vitamina D, da assimetria de membros e do gait score, no grau de lesões de perna em frangos de corte, utilizando mineração de dados. A análise foi realizada em um conjunto de dados obtidos de um experimento de campo, em que foram utilizados dois grupos de aves com 30 aves cada, sendo um grupo-controle e outro tratado com vitamina D. Foram avaliados o gait score, a assimetria entre os dedos dos pés direito e esquerdo, e o grau de lesões de perna. O software Weka® foi utilizado na mineração de dados. Em particular, o algoritmo C4.5 (também conhecido como J48 no ambiente Weka) foi utilizado para a geração de uma árvore de decisão. Os resultados mostraram que a idade é o fator que mais influencia o grau de lesões de perna e que os dados provenientes das avaliações de gait score não se mostraram confiáveis para estimar problemas locomotores em frangos de corte.Associação Brasileira de Engenharia Agrícola2016-08-24T20:00:34Z2016-08-24T20:00:34Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCORDEIRO, A. F. da S. et al. Using data mining to identify factors that influence the degree of leg injuries in broilers. Engenharia Agrícola, Jaboticabal, v. 32, n. 4, p. 642-649, jul./ago. 2012.http://repositorio.ufla.br/jspui/handle/1/11682Engenharia Agrícolareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLACordeiro, Alexandra Ferreira da SilvaBaracho, Marta dos S.Naas, Irenilza de AlencarNascimento, Guilherme R. doinfo:eu-repo/semantics/openAccesseng2023-05-03T11:26:48Zoai:localhost:1/11682Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-03T11:26:48Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Using data mining to identify factors that influence the degree of leg injuries in broilers Uso de mineração de dados para identificação de fatores que influenciam o grau de lesões de perna em frangos de corte |
title |
Using data mining to identify factors that influence the degree of leg injuries in broilers |
spellingShingle |
Using data mining to identify factors that influence the degree of leg injuries in broilers Cordeiro, Alexandra Ferreira da Silva Árvore de decisão Avicultura Gait score Decision trees Aviculture |
title_short |
Using data mining to identify factors that influence the degree of leg injuries in broilers |
title_full |
Using data mining to identify factors that influence the degree of leg injuries in broilers |
title_fullStr |
Using data mining to identify factors that influence the degree of leg injuries in broilers |
title_full_unstemmed |
Using data mining to identify factors that influence the degree of leg injuries in broilers |
title_sort |
Using data mining to identify factors that influence the degree of leg injuries in broilers |
author |
Cordeiro, Alexandra Ferreira da Silva |
author_facet |
Cordeiro, Alexandra Ferreira da Silva Baracho, Marta dos S. Naas, Irenilza de Alencar Nascimento, Guilherme R. do |
author_role |
author |
author2 |
Baracho, Marta dos S. Naas, Irenilza de Alencar Nascimento, Guilherme R. do |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Cordeiro, Alexandra Ferreira da Silva Baracho, Marta dos S. Naas, Irenilza de Alencar Nascimento, Guilherme R. do |
dc.subject.por.fl_str_mv |
Árvore de decisão Avicultura Gait score Decision trees Aviculture |
topic |
Árvore de decisão Avicultura Gait score Decision trees Aviculture |
description |
Locomotor problems prevent the bird to move freely, jeopardizing the welfare and productivity, besides generating injuries on the legs of chickens. The objective of this study was to evaluate the influence of age, use of vitamin D, the asymmetry of limbs and gait score, the degree of leg injuries in broilers, using data mining. The analysis was performed on a data set obtained from a field experiment in which it was used two groups of birds with 30 birds each, a control group and one treated with vitamin D. It was evaluated the gait score, the asymmetry between the right and left toes, and the degree of leg injuries. The Weka ® software was used in data mining. In particular, C4.5 algorithm (also known as J48 in Weka environment) was used for the generation of a decision tree. The results showed that age is the factor that most influences the degree of leg injuries and that the data from assessments of gait score were not reliable to estimate leg weakness in broilers. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2016-08-24T20:00:34Z 2016-08-24T20:00:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CORDEIRO, A. F. da S. et al. Using data mining to identify factors that influence the degree of leg injuries in broilers. Engenharia Agrícola, Jaboticabal, v. 32, n. 4, p. 642-649, jul./ago. 2012. http://repositorio.ufla.br/jspui/handle/1/11682 |
identifier_str_mv |
CORDEIRO, A. F. da S. et al. Using data mining to identify factors that influence the degree of leg injuries in broilers. Engenharia Agrícola, Jaboticabal, v. 32, n. 4, p. 642-649, jul./ago. 2012. |
url |
http://repositorio.ufla.br/jspui/handle/1/11682 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
dc.source.none.fl_str_mv |
Engenharia Agrícola reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439351246487552 |