Proposed application of data mining techniques for clustering software projects
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383 http://repositorio.ufla.br/jspui/handle/1/10135 |
Resumo: | Software projects always generate a lot of data, ranging from informal documentation to a database with thousands of lines of code. This information extracted from software projects takes even greater when it comes to OSS (Open Source Software). Such data may include source code base, historical change in the software, bug reports, mailing lists, among others. Using data mining techniques, we can extract valuable knowledge of this set of information, thus providing improvements throughout the process of software development. The results can be used to improve the quality of software, or even to manage the project in order to obtain maximum efficiency. This article proposes the application of data mining techniques to cluster software projects, cites the advantages that can be obtained with these techniques, and illustrates the application of data mining in a Open Source Software database. |
id |
UFLA_618985c84a0169894ec1a697b5406d91 |
---|---|
oai_identifier_str |
oai:localhost:1/10135 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Proposed application of data mining techniques for clustering software projectsData miningSoftware engineeringClusterOSSMineração de dadosEngenharia de softwareAgrupamentoSoftware projects always generate a lot of data, ranging from informal documentation to a database with thousands of lines of code. This information extracted from software projects takes even greater when it comes to OSS (Open Source Software). Such data may include source code base, historical change in the software, bug reports, mailing lists, among others. Using data mining techniques, we can extract valuable knowledge of this set of information, thus providing improvements throughout the process of software development. The results can be used to improve the quality of software, or even to manage the project in order to obtain maximum efficiency. This article proposes the application of data mining techniques to cluster software projects, cites the advantages that can be obtained with these techniques, and illustrates the application of data mining in a Open Source Software database.Editora da UFLA2010-07-012015-08-26T13:42:16Z2015-08-26T13:42:16Z2015-08-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttp://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383REZENDE, H. R.; ESMIN, A. A. A. Proposed application of data mining techniques for clustering software projects. INFOCOMP: Journal of Computer Science, Lavras, v. 9, n. 6, p. 43-48, July 2010. Special Issue.http://repositorio.ufla.br/jspui/handle/1/10135INFOCOMP Journal of Computer Science; Vol 9, No 6 (2010): Special Issue - July, 2010; 43-481982-33631807-4545reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383/365Copyright (c) 2015 INFOCOMP Journal of Computer Scienceinfo:eu-repo/semantics/openAccessRezende, Henrique RibeiroEsmin, Ahmed Ali Abdalla2016-01-22T10:35:22Zoai:localhost:1/10135Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2016-01-22T10:35:22Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Proposed application of data mining techniques for clustering software projects |
title |
Proposed application of data mining techniques for clustering software projects |
spellingShingle |
Proposed application of data mining techniques for clustering software projects Rezende, Henrique Ribeiro Data mining Software engineering Cluster OSS Mineração de dados Engenharia de software Agrupamento |
title_short |
Proposed application of data mining techniques for clustering software projects |
title_full |
Proposed application of data mining techniques for clustering software projects |
title_fullStr |
Proposed application of data mining techniques for clustering software projects |
title_full_unstemmed |
Proposed application of data mining techniques for clustering software projects |
title_sort |
Proposed application of data mining techniques for clustering software projects |
author |
Rezende, Henrique Ribeiro |
author_facet |
Rezende, Henrique Ribeiro Esmin, Ahmed Ali Abdalla |
author_role |
author |
author2 |
Esmin, Ahmed Ali Abdalla |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Rezende, Henrique Ribeiro Esmin, Ahmed Ali Abdalla |
dc.subject.por.fl_str_mv |
Data mining Software engineering Cluster OSS Mineração de dados Engenharia de software Agrupamento |
topic |
Data mining Software engineering Cluster OSS Mineração de dados Engenharia de software Agrupamento |
description |
Software projects always generate a lot of data, ranging from informal documentation to a database with thousands of lines of code. This information extracted from software projects takes even greater when it comes to OSS (Open Source Software). Such data may include source code base, historical change in the software, bug reports, mailing lists, among others. Using data mining techniques, we can extract valuable knowledge of this set of information, thus providing improvements throughout the process of software development. The results can be used to improve the quality of software, or even to manage the project in order to obtain maximum efficiency. This article proposes the application of data mining techniques to cluster software projects, cites the advantages that can be obtained with these techniques, and illustrates the application of data mining in a Open Source Software database. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-07-01 2015-08-26T13:42:16Z 2015-08-26T13:42:16Z 2015-08-26 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383 REZENDE, H. R.; ESMIN, A. A. A. Proposed application of data mining techniques for clustering software projects. INFOCOMP: Journal of Computer Science, Lavras, v. 9, n. 6, p. 43-48, July 2010. Special Issue. http://repositorio.ufla.br/jspui/handle/1/10135 |
url |
http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383 http://repositorio.ufla.br/jspui/handle/1/10135 |
identifier_str_mv |
REZENDE, H. R.; ESMIN, A. A. A. Proposed application of data mining techniques for clustering software projects. INFOCOMP: Journal of Computer Science, Lavras, v. 9, n. 6, p. 43-48, July 2010. Special Issue. |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383/365 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2015 INFOCOMP Journal of Computer Science info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2015 INFOCOMP Journal of Computer Science |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora da UFLA |
publisher.none.fl_str_mv |
Editora da UFLA |
dc.source.none.fl_str_mv |
INFOCOMP Journal of Computer Science; Vol 9, No 6 (2010): Special Issue - July, 2010; 43-48 1982-3363 1807-4545 reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439270226165760 |