Proposed application of data mining techniques for clustering software projects

Detalhes bibliográficos
Autor(a) principal: Rezende, Henrique Ribeiro
Data de Publicação: 2010
Outros Autores: Esmin, Ahmed Ali Abdalla
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383
http://repositorio.ufla.br/jspui/handle/1/10135
Resumo: Software projects always generate a lot of data, ranging from informal documentation to a database with thousands of lines of code. This information extracted from software projects takes even greater when it comes to OSS (Open Source Software). Such data may include source code base, historical change in the software, bug reports, mailing lists, among others. Using data mining techniques, we can extract valuable knowledge of this set of information, thus providing improvements throughout the process of software development. The results can be used to improve the quality of software, or even to manage the project in order to obtain maximum efficiency. This article proposes the application of data mining techniques to cluster software projects, cites the advantages that can be obtained with these techniques, and illustrates the application of data mining in a Open Source Software database.
id UFLA_618985c84a0169894ec1a697b5406d91
oai_identifier_str oai:localhost:1/10135
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Proposed application of data mining techniques for clustering software projectsData miningSoftware engineeringClusterOSSMineração de dadosEngenharia de softwareAgrupamentoSoftware projects always generate a lot of data, ranging from informal documentation to a database with thousands of lines of code. This information extracted from software projects takes even greater when it comes to OSS (Open Source Software). Such data may include source code base, historical change in the software, bug reports, mailing lists, among others. Using data mining techniques, we can extract valuable knowledge of this set of information, thus providing improvements throughout the process of software development. The results can be used to improve the quality of software, or even to manage the project in order to obtain maximum efficiency. This article proposes the application of data mining techniques to cluster software projects, cites the advantages that can be obtained with these techniques, and illustrates the application of data mining in a Open Source Software database.Editora da UFLA2010-07-012015-08-26T13:42:16Z2015-08-26T13:42:16Z2015-08-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttp://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383REZENDE, H. R.; ESMIN, A. A. A. Proposed application of data mining techniques for clustering software projects. INFOCOMP: Journal of Computer Science, Lavras, v. 9, n. 6, p. 43-48, July 2010. Special Issue.http://repositorio.ufla.br/jspui/handle/1/10135INFOCOMP Journal of Computer Science; Vol 9, No 6 (2010): Special Issue - July, 2010; 43-481982-33631807-4545reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383/365Copyright (c) 2015 INFOCOMP Journal of Computer Scienceinfo:eu-repo/semantics/openAccessRezende, Henrique RibeiroEsmin, Ahmed Ali Abdalla2016-01-22T10:35:22Zoai:localhost:1/10135Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2016-01-22T10:35:22Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Proposed application of data mining techniques for clustering software projects
title Proposed application of data mining techniques for clustering software projects
spellingShingle Proposed application of data mining techniques for clustering software projects
Rezende, Henrique Ribeiro
Data mining
Software engineering
Cluster
OSS
Mineração de dados
Engenharia de software
Agrupamento
title_short Proposed application of data mining techniques for clustering software projects
title_full Proposed application of data mining techniques for clustering software projects
title_fullStr Proposed application of data mining techniques for clustering software projects
title_full_unstemmed Proposed application of data mining techniques for clustering software projects
title_sort Proposed application of data mining techniques for clustering software projects
author Rezende, Henrique Ribeiro
author_facet Rezende, Henrique Ribeiro
Esmin, Ahmed Ali Abdalla
author_role author
author2 Esmin, Ahmed Ali Abdalla
author2_role author
dc.contributor.author.fl_str_mv Rezende, Henrique Ribeiro
Esmin, Ahmed Ali Abdalla
dc.subject.por.fl_str_mv Data mining
Software engineering
Cluster
OSS
Mineração de dados
Engenharia de software
Agrupamento
topic Data mining
Software engineering
Cluster
OSS
Mineração de dados
Engenharia de software
Agrupamento
description Software projects always generate a lot of data, ranging from informal documentation to a database with thousands of lines of code. This information extracted from software projects takes even greater when it comes to OSS (Open Source Software). Such data may include source code base, historical change in the software, bug reports, mailing lists, among others. Using data mining techniques, we can extract valuable knowledge of this set of information, thus providing improvements throughout the process of software development. The results can be used to improve the quality of software, or even to manage the project in order to obtain maximum efficiency. This article proposes the application of data mining techniques to cluster software projects, cites the advantages that can be obtained with these techniques, and illustrates the application of data mining in a Open Source Software database.
publishDate 2010
dc.date.none.fl_str_mv 2010-07-01
2015-08-26T13:42:16Z
2015-08-26T13:42:16Z
2015-08-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383
REZENDE, H. R.; ESMIN, A. A. A. Proposed application of data mining techniques for clustering software projects. INFOCOMP: Journal of Computer Science, Lavras, v. 9, n. 6, p. 43-48, July 2010. Special Issue.
http://repositorio.ufla.br/jspui/handle/1/10135
url http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383
http://repositorio.ufla.br/jspui/handle/1/10135
identifier_str_mv REZENDE, H. R.; ESMIN, A. A. A. Proposed application of data mining techniques for clustering software projects. INFOCOMP: Journal of Computer Science, Lavras, v. 9, n. 6, p. 43-48, July 2010. Special Issue.
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/383/365
dc.rights.driver.fl_str_mv Copyright (c) 2015 INFOCOMP Journal of Computer Science
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2015 INFOCOMP Journal of Computer Science
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora da UFLA
publisher.none.fl_str_mv Editora da UFLA
dc.source.none.fl_str_mv INFOCOMP Journal of Computer Science; Vol 9, No 6 (2010): Special Issue - July, 2010; 43-48
1982-3363
1807-4545
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439270226165760