Optimizing flying base station connectivity by RAN slicing and reinforcement learning

Detalhes bibliográficos
Autor(a) principal: Carrillo Melgarejo, Dick
Data de Publicação: 2022
Outros Autores: Pokorny, Jiri, Seda, Pavel, Narayanan, Arun, Nardelli, Pedro H. J., Rasti, Mehdi, Hosek, Jiri, Seda, Milos, Rodríguez, Demóstenes Z., Koucheryavy, Yevgeni, Fraidenraich, Gustavo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/55353
Resumo: The application of flying base stations (FBS) in wireless communication is becoming a key enabler to improve cellular wireless connectivity. Following this tendency, this research work aims to enhance the spectral efficiency of FBSs using the radio access network (RAN) slicing framework; this optimization considers that FBSs’ location was already defined previously. This framework splits the physical radio resources into three RAN slices. These RAN slices schedule resources by optimizing individual slice spectral efficiency by using a deep reinforcement learning approach. The simulation indicates that the proposed framework generally outperforms the spectral efficiency of the network that only considers the heuristic predefined FBS location, although the gains are not always significant in some specific cases. Finally, spectral efficiency is analyzed for each RAN slice resource and evaluated in terms of service-level agreement (SLA) to indicate the performance of the framework.
id UFLA_66297d0ffa35984b2f8f050e53493908
oai_identifier_str oai:localhost:1/55353
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Optimizing flying base station connectivity by RAN slicing and reinforcement learningFlying base stationsUnmanned aerial vehicles (UAVs)Location optimizationWireless communicationDeep-reinforcement learningEstações-bases voadorasVeículos aéreos não tripulados (VANTs)Comunicações sem fioAprendizagem por reforço profundoThe application of flying base stations (FBS) in wireless communication is becoming a key enabler to improve cellular wireless connectivity. Following this tendency, this research work aims to enhance the spectral efficiency of FBSs using the radio access network (RAN) slicing framework; this optimization considers that FBSs’ location was already defined previously. This framework splits the physical radio resources into three RAN slices. These RAN slices schedule resources by optimizing individual slice spectral efficiency by using a deep reinforcement learning approach. The simulation indicates that the proposed framework generally outperforms the spectral efficiency of the network that only considers the heuristic predefined FBS location, although the gains are not always significant in some specific cases. Finally, spectral efficiency is analyzed for each RAN slice resource and evaluated in terms of service-level agreement (SLA) to indicate the performance of the framework.Institute of Electrical and Electronics Engineers (IEEE)2022-10-27T22:26:28Z2022-10-27T22:26:28Z2022-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCARRILLO MELGAREJO, D. et al. Optimizing flying base station connectivity by RAN slicing and reinforcement learning. IEEE Access, [S.I.], p. 53746-53760, 2022. DOI: 10.1109/ACCESS.2022.3175487.http://repositorio.ufla.br/jspui/handle/1/55353IEEE Accessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessCarrillo Melgarejo, DickPokorny, JiriSeda, PavelNarayanan, ArunNardelli, Pedro H. J.Rasti, MehdiHosek, JiriSeda, MilosRodríguez, Demóstenes Z.Koucheryavy, YevgeniFraidenraich, Gustavoeng2023-05-03T13:17:45Zoai:localhost:1/55353Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-03T13:17:45Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Optimizing flying base station connectivity by RAN slicing and reinforcement learning
title Optimizing flying base station connectivity by RAN slicing and reinforcement learning
spellingShingle Optimizing flying base station connectivity by RAN slicing and reinforcement learning
Carrillo Melgarejo, Dick
Flying base stations
Unmanned aerial vehicles (UAVs)
Location optimization
Wireless communication
Deep-reinforcement learning
Estações-bases voadoras
Veículos aéreos não tripulados (VANTs)
Comunicações sem fio
Aprendizagem por reforço profundo
title_short Optimizing flying base station connectivity by RAN slicing and reinforcement learning
title_full Optimizing flying base station connectivity by RAN slicing and reinforcement learning
title_fullStr Optimizing flying base station connectivity by RAN slicing and reinforcement learning
title_full_unstemmed Optimizing flying base station connectivity by RAN slicing and reinforcement learning
title_sort Optimizing flying base station connectivity by RAN slicing and reinforcement learning
author Carrillo Melgarejo, Dick
author_facet Carrillo Melgarejo, Dick
Pokorny, Jiri
Seda, Pavel
Narayanan, Arun
Nardelli, Pedro H. J.
Rasti, Mehdi
Hosek, Jiri
Seda, Milos
Rodríguez, Demóstenes Z.
Koucheryavy, Yevgeni
Fraidenraich, Gustavo
author_role author
author2 Pokorny, Jiri
Seda, Pavel
Narayanan, Arun
Nardelli, Pedro H. J.
Rasti, Mehdi
Hosek, Jiri
Seda, Milos
Rodríguez, Demóstenes Z.
Koucheryavy, Yevgeni
Fraidenraich, Gustavo
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Carrillo Melgarejo, Dick
Pokorny, Jiri
Seda, Pavel
Narayanan, Arun
Nardelli, Pedro H. J.
Rasti, Mehdi
Hosek, Jiri
Seda, Milos
Rodríguez, Demóstenes Z.
Koucheryavy, Yevgeni
Fraidenraich, Gustavo
dc.subject.por.fl_str_mv Flying base stations
Unmanned aerial vehicles (UAVs)
Location optimization
Wireless communication
Deep-reinforcement learning
Estações-bases voadoras
Veículos aéreos não tripulados (VANTs)
Comunicações sem fio
Aprendizagem por reforço profundo
topic Flying base stations
Unmanned aerial vehicles (UAVs)
Location optimization
Wireless communication
Deep-reinforcement learning
Estações-bases voadoras
Veículos aéreos não tripulados (VANTs)
Comunicações sem fio
Aprendizagem por reforço profundo
description The application of flying base stations (FBS) in wireless communication is becoming a key enabler to improve cellular wireless connectivity. Following this tendency, this research work aims to enhance the spectral efficiency of FBSs using the radio access network (RAN) slicing framework; this optimization considers that FBSs’ location was already defined previously. This framework splits the physical radio resources into three RAN slices. These RAN slices schedule resources by optimizing individual slice spectral efficiency by using a deep reinforcement learning approach. The simulation indicates that the proposed framework generally outperforms the spectral efficiency of the network that only considers the heuristic predefined FBS location, although the gains are not always significant in some specific cases. Finally, spectral efficiency is analyzed for each RAN slice resource and evaluated in terms of service-level agreement (SLA) to indicate the performance of the framework.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-27T22:26:28Z
2022-10-27T22:26:28Z
2022-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv CARRILLO MELGAREJO, D. et al. Optimizing flying base station connectivity by RAN slicing and reinforcement learning. IEEE Access, [S.I.], p. 53746-53760, 2022. DOI: 10.1109/ACCESS.2022.3175487.
http://repositorio.ufla.br/jspui/handle/1/55353
identifier_str_mv CARRILLO MELGAREJO, D. et al. Optimizing flying base station connectivity by RAN slicing and reinforcement learning. IEEE Access, [S.I.], p. 53746-53760, 2022. DOI: 10.1109/ACCESS.2022.3175487.
url http://repositorio.ufla.br/jspui/handle/1/55353
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers (IEEE)
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers (IEEE)
dc.source.none.fl_str_mv IEEE Access
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439204593696768