The extended generalized gamma geometric distribution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/36629 |
Resumo: | We propose and study the so-called extended generalized gamma geometric distribution. The proposed distribution has five parameters and it can be accommodate increasing, decreasing, bathtub and unimodal shaped hazard functions. The new distribution has a large number of well-known lifetime special sub-models such as the generalized gamma geometric, Weibull geometric, gamma geometric, exponential geometric, Rayleigh geometric, half-normal geometric among others. We provide a mathematical treatment of the new distribution including explicit expressions for moments, moment generating function, mean deviations, reliability and order statistics. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. Finally, an application of the new distribution is illustrated in a real data sets. |
id |
UFLA_66f6a344194fe06dfc50e5fbe5739ad5 |
---|---|
oai_identifier_str |
oai:localhost:1/36629 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
The extended generalized gamma geometric distributionGeneralized gamma distributionWeibull geometric distributionLifetime distributionMaximum likelihood estimationBimodalityDistribuição gama generalizadaDistribuição geométrica WeibullDistribuição vitalíciaEstimativa de máxima verossimilhançaBimodalidadeWe propose and study the so-called extended generalized gamma geometric distribution. The proposed distribution has five parameters and it can be accommodate increasing, decreasing, bathtub and unimodal shaped hazard functions. The new distribution has a large number of well-known lifetime special sub-models such as the generalized gamma geometric, Weibull geometric, gamma geometric, exponential geometric, Rayleigh geometric, half-normal geometric among others. We provide a mathematical treatment of the new distribution including explicit expressions for moments, moment generating function, mean deviations, reliability and order statistics. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. Finally, an application of the new distribution is illustrated in a real data sets.Canadian Center of Science and Education2019-09-05T17:44:31Z2019-09-05T17:44:31Z2017-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfBORTOLINI, J. et al. The extended generalized gamma geometric distribution. International Journal of Statistics and Probability, [S. l.], v. 6, n. 4, p. 48-69, July 2017.http://repositorio.ufla.br/jspui/handle/1/36629International Journal of Statistics and Probabilityreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessBortolini, JulianoPascoa, Marcelino A. R.Lima, Renato Ribeiro deOliveira, Anderson C. S.eng2019-09-05T17:44:32Zoai:localhost:1/36629Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2019-09-05T17:44:32Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
The extended generalized gamma geometric distribution |
title |
The extended generalized gamma geometric distribution |
spellingShingle |
The extended generalized gamma geometric distribution Bortolini, Juliano Generalized gamma distribution Weibull geometric distribution Lifetime distribution Maximum likelihood estimation Bimodality Distribuição gama generalizada Distribuição geométrica Weibull Distribuição vitalícia Estimativa de máxima verossimilhança Bimodalidade |
title_short |
The extended generalized gamma geometric distribution |
title_full |
The extended generalized gamma geometric distribution |
title_fullStr |
The extended generalized gamma geometric distribution |
title_full_unstemmed |
The extended generalized gamma geometric distribution |
title_sort |
The extended generalized gamma geometric distribution |
author |
Bortolini, Juliano |
author_facet |
Bortolini, Juliano Pascoa, Marcelino A. R. Lima, Renato Ribeiro de Oliveira, Anderson C. S. |
author_role |
author |
author2 |
Pascoa, Marcelino A. R. Lima, Renato Ribeiro de Oliveira, Anderson C. S. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Bortolini, Juliano Pascoa, Marcelino A. R. Lima, Renato Ribeiro de Oliveira, Anderson C. S. |
dc.subject.por.fl_str_mv |
Generalized gamma distribution Weibull geometric distribution Lifetime distribution Maximum likelihood estimation Bimodality Distribuição gama generalizada Distribuição geométrica Weibull Distribuição vitalícia Estimativa de máxima verossimilhança Bimodalidade |
topic |
Generalized gamma distribution Weibull geometric distribution Lifetime distribution Maximum likelihood estimation Bimodality Distribuição gama generalizada Distribuição geométrica Weibull Distribuição vitalícia Estimativa de máxima verossimilhança Bimodalidade |
description |
We propose and study the so-called extended generalized gamma geometric distribution. The proposed distribution has five parameters and it can be accommodate increasing, decreasing, bathtub and unimodal shaped hazard functions. The new distribution has a large number of well-known lifetime special sub-models such as the generalized gamma geometric, Weibull geometric, gamma geometric, exponential geometric, Rayleigh geometric, half-normal geometric among others. We provide a mathematical treatment of the new distribution including explicit expressions for moments, moment generating function, mean deviations, reliability and order statistics. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. Finally, an application of the new distribution is illustrated in a real data sets. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 2019-09-05T17:44:31Z 2019-09-05T17:44:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
BORTOLINI, J. et al. The extended generalized gamma geometric distribution. International Journal of Statistics and Probability, [S. l.], v. 6, n. 4, p. 48-69, July 2017. http://repositorio.ufla.br/jspui/handle/1/36629 |
identifier_str_mv |
BORTOLINI, J. et al. The extended generalized gamma geometric distribution. International Journal of Statistics and Probability, [S. l.], v. 6, n. 4, p. 48-69, July 2017. |
url |
http://repositorio.ufla.br/jspui/handle/1/36629 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Canadian Center of Science and Education |
publisher.none.fl_str_mv |
Canadian Center of Science and Education |
dc.source.none.fl_str_mv |
International Journal of Statistics and Probability reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439022333362176 |