Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils

Detalhes bibliográficos
Autor(a) principal: Silva, Sérgio Henrique Godinho
Data de Publicação: 2020
Outros Autores: Silva, Elen Alvarenga, Poggere, Giovana Clarice, Pádua Junior, Alceu Linares, Gonçalves, Mariana Gabriele Marcolino, Guilherme, Luiz Roberto Guimarães, Curi, Nilton
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/43010
Resumo: Sulfuric acid digestion analyses (SAD) provide useful information to environmental studies, in terms of the geochemical balance of nutrients, parent material uniformity, nutrient reserves for perennial crops, and mineralogical composition of the soil clay fraction. Yet, these analyses are costly, time consuming, and generate chemical waste. This work aimed at predicting SAD results from portable X-ray fluorescence (pXRF) spectrometry, which is proposed as a “green chemistry” alternative to the current SAD method. Soil samples developed from different parent materials were analyzed for soil texture and SAD, and scanned with pXRF. The SAD results were predicted from pXRF elemental analyses through simple linear regressions, stepwise multiple linear regressions, and random forest algorithm, with and without incorporation of soil texture data. The modeling was developed with 70 % of the data, while the remaining 30 % was used for validation through calculation of R2, adjusted R2, root mean square error, and mean error. Simple linear regression can accurately predict SAD results of Fe2O3 (R2 0.89), TiO2 (R2 0.96), and P2O5 (R2 0.89). Stepwise regressions provided accurate predictions for Al2O3 (R2 0.87) and Ki - molar weathering index (SiO2/Al2O3) (R2 0.74) by incorporating soil texture data, as well as for SiO2 (R2 0.61). Random forest also provided adequate predictions, especially for Fe2O3 (R2 0.95), and improved results of Kr - molar weathering index (SiO2/(Al2O3 + Fe2O3)) (R2 0.66), by incorporation of soil texture data. Our findings showed that the SAD results could be accurately predicted from pXRF data, decreasing costs, time and the production of laboratory waste.
id UFLA_74f769f2badb999fbc0652b3e25ea468
oai_identifier_str oai:localhost:1/43010
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soilsSoil clay fractionWeathering indicesRandom forestProximal sensorsGreen chemistryFração de argila do soloÍndices de intemperismoFloresta aleatóriaSensores proximaisQuímica verdeSulfuric acid digestion analyses (SAD) provide useful information to environmental studies, in terms of the geochemical balance of nutrients, parent material uniformity, nutrient reserves for perennial crops, and mineralogical composition of the soil clay fraction. Yet, these analyses are costly, time consuming, and generate chemical waste. This work aimed at predicting SAD results from portable X-ray fluorescence (pXRF) spectrometry, which is proposed as a “green chemistry” alternative to the current SAD method. Soil samples developed from different parent materials were analyzed for soil texture and SAD, and scanned with pXRF. The SAD results were predicted from pXRF elemental analyses through simple linear regressions, stepwise multiple linear regressions, and random forest algorithm, with and without incorporation of soil texture data. The modeling was developed with 70 % of the data, while the remaining 30 % was used for validation through calculation of R2, adjusted R2, root mean square error, and mean error. Simple linear regression can accurately predict SAD results of Fe2O3 (R2 0.89), TiO2 (R2 0.96), and P2O5 (R2 0.89). Stepwise regressions provided accurate predictions for Al2O3 (R2 0.87) and Ki - molar weathering index (SiO2/Al2O3) (R2 0.74) by incorporating soil texture data, as well as for SiO2 (R2 0.61). Random forest also provided adequate predictions, especially for Fe2O3 (R2 0.95), and improved results of Kr - molar weathering index (SiO2/(Al2O3 + Fe2O3)) (R2 0.66), by incorporation of soil texture data. Our findings showed that the SAD results could be accurately predicted from pXRF data, decreasing costs, time and the production of laboratory waste.Escola Superior de Agricultura "Luiz de Queiroz"2020-09-11T17:59:01Z2020-09-11T17:59:01Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSILVA, S. H. G. et al. Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils. Scientia Agricola, Piracicaba, v. 77, n. 4, e20180132, 2020. DOI: http://dx.doi.org/10.1590/1678-992x-2018-0132.http://repositorio.ufla.br/jspui/handle/1/43010Scientia Agricolareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSilva, Sérgio Henrique GodinhoSilva, Elen AlvarengaPoggere, Giovana ClaricePádua Junior, Alceu LinaresGonçalves, Mariana Gabriele MarcolinoGuilherme, Luiz Roberto GuimarãesCuri, Niltoneng2020-09-11T17:59:01Zoai:localhost:1/43010Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2020-09-11T17:59:01Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils
title Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils
spellingShingle Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils
Silva, Sérgio Henrique Godinho
Soil clay fraction
Weathering indices
Random forest
Proximal sensors
Green chemistry
Fração de argila do solo
Índices de intemperismo
Floresta aleatória
Sensores proximais
Química verde
title_short Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils
title_full Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils
title_fullStr Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils
title_full_unstemmed Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils
title_sort Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils
author Silva, Sérgio Henrique Godinho
author_facet Silva, Sérgio Henrique Godinho
Silva, Elen Alvarenga
Poggere, Giovana Clarice
Pádua Junior, Alceu Linares
Gonçalves, Mariana Gabriele Marcolino
Guilherme, Luiz Roberto Guimarães
Curi, Nilton
author_role author
author2 Silva, Elen Alvarenga
Poggere, Giovana Clarice
Pádua Junior, Alceu Linares
Gonçalves, Mariana Gabriele Marcolino
Guilherme, Luiz Roberto Guimarães
Curi, Nilton
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Silva, Sérgio Henrique Godinho
Silva, Elen Alvarenga
Poggere, Giovana Clarice
Pádua Junior, Alceu Linares
Gonçalves, Mariana Gabriele Marcolino
Guilherme, Luiz Roberto Guimarães
Curi, Nilton
dc.subject.por.fl_str_mv Soil clay fraction
Weathering indices
Random forest
Proximal sensors
Green chemistry
Fração de argila do solo
Índices de intemperismo
Floresta aleatória
Sensores proximais
Química verde
topic Soil clay fraction
Weathering indices
Random forest
Proximal sensors
Green chemistry
Fração de argila do solo
Índices de intemperismo
Floresta aleatória
Sensores proximais
Química verde
description Sulfuric acid digestion analyses (SAD) provide useful information to environmental studies, in terms of the geochemical balance of nutrients, parent material uniformity, nutrient reserves for perennial crops, and mineralogical composition of the soil clay fraction. Yet, these analyses are costly, time consuming, and generate chemical waste. This work aimed at predicting SAD results from portable X-ray fluorescence (pXRF) spectrometry, which is proposed as a “green chemistry” alternative to the current SAD method. Soil samples developed from different parent materials were analyzed for soil texture and SAD, and scanned with pXRF. The SAD results were predicted from pXRF elemental analyses through simple linear regressions, stepwise multiple linear regressions, and random forest algorithm, with and without incorporation of soil texture data. The modeling was developed with 70 % of the data, while the remaining 30 % was used for validation through calculation of R2, adjusted R2, root mean square error, and mean error. Simple linear regression can accurately predict SAD results of Fe2O3 (R2 0.89), TiO2 (R2 0.96), and P2O5 (R2 0.89). Stepwise regressions provided accurate predictions for Al2O3 (R2 0.87) and Ki - molar weathering index (SiO2/Al2O3) (R2 0.74) by incorporating soil texture data, as well as for SiO2 (R2 0.61). Random forest also provided adequate predictions, especially for Fe2O3 (R2 0.95), and improved results of Kr - molar weathering index (SiO2/(Al2O3 + Fe2O3)) (R2 0.66), by incorporation of soil texture data. Our findings showed that the SAD results could be accurately predicted from pXRF data, decreasing costs, time and the production of laboratory waste.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-11T17:59:01Z
2020-09-11T17:59:01Z
2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, S. H. G. et al. Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils. Scientia Agricola, Piracicaba, v. 77, n. 4, e20180132, 2020. DOI: http://dx.doi.org/10.1590/1678-992x-2018-0132.
http://repositorio.ufla.br/jspui/handle/1/43010
identifier_str_mv SILVA, S. H. G. et al. Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils. Scientia Agricola, Piracicaba, v. 77, n. 4, e20180132, 2020. DOI: http://dx.doi.org/10.1590/1678-992x-2018-0132.
url http://repositorio.ufla.br/jspui/handle/1/43010
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
dc.source.none.fl_str_mv Scientia Agricola
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439067038351360