Application of artificial neural network in the classification of coffee áreas in Machado, Minas Gerais State
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/13614 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/363 |
Resumo: | The coffee is extremely important activity in southern of Minas Gerais and techniques for estimating acreage, seeking reliable crop forecasts are being intensely investigated. It is presented in this study, an application of Artificial Neural Networks (ANN) for the automatic classification of remote sensing data in order to identify areas of the coffee region Machado, Minas Gerais. The methodology for developing the application of RNA was divided intothree stages: pre-processing of data, training and use of RNA, and analysis of results. The first step was performed dividing the study area into two parts (one embossed busiest and least busy one with relief), because this region has a strong emphasis smooth wavy, causing a greater difficulty of automatic mapping of use earth from satelliteimages. Masks were also created in the drainage network and the urban area. In the second step, various RNA’s were trained from several samples representative of the classes of images of interest and was made to classify the rest ofthe image obtained using the best RNA. The third step consisted in analyzing and validating the results, performing across between the classified map and the map visually classified by neural network chosen. We used the Kappa index to evaluate the performance of the RNA, since the use of this coefficient is satisfactory to assess the accuracy of a thematic classification. The result was higher than the results reported in the literature, with a Kappa index of 0.558 to 0.602 relief busiest and least busy for relief. |
id |
UFLA_7f67ed0fbe0f99c48ad59996a85c4532 |
---|---|
oai_identifier_str |
oai:localhost:1/13614 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Application of artificial neural network in the classification of coffee áreas in Machado, Minas Gerais StateArtificial neural networksCafeiculturaRedes neurais artificiaisAutomatic classificationCoffeeGeoprocessamentoCafeiculturaThe coffee is extremely important activity in southern of Minas Gerais and techniques for estimating acreage, seeking reliable crop forecasts are being intensely investigated. It is presented in this study, an application of Artificial Neural Networks (ANN) for the automatic classification of remote sensing data in order to identify areas of the coffee region Machado, Minas Gerais. The methodology for developing the application of RNA was divided intothree stages: pre-processing of data, training and use of RNA, and analysis of results. The first step was performed dividing the study area into two parts (one embossed busiest and least busy one with relief), because this region has a strong emphasis smooth wavy, causing a greater difficulty of automatic mapping of use earth from satelliteimages. Masks were also created in the drainage network and the urban area. In the second step, various RNA’s were trained from several samples representative of the classes of images of interest and was made to classify the rest ofthe image obtained using the best RNA. The third step consisted in analyzing and validating the results, performing across between the classified map and the map visually classified by neural network chosen. We used the Kappa index to evaluate the performance of the RNA, since the use of this coefficient is satisfactory to assess the accuracy of a thematic classification. The result was higher than the results reported in the literature, with a Kappa index of 0.558 to 0.602 relief busiest and least busy for relief.A cafeicultura é atividade de fundamental importância na região sul de Minas Gerais e técnicas de estimativa da área plantada, visando previsões de safra confiáveis, estão sendo intensamente pesquisadas. Apresenta-se,no presente estudo, uma aplicação de Redes Neurais Artificiais (RNA) para a classificação automática de dados de sensoriamento remoto, objetivando identificar áreas cafeeiras da região de Machado, MG. A metodologia para desenvolvimento da aplicação da RNA foi dividida em três etapas: pré-processamento dos dados; treinamento e uso da RNA; e análise dos resultados. Na primeira etapa foi realizada a divisão da área em estudo em duas partes (uma com relevo mais movimentado e outra com relevo menos movimentado), isso porque a região apresenta relevo suave ondulado a forte ondulado, o que acarreta maior dificuldade do mapeamento automático do uso da terra a partir de imagens de satélite. Foram também criadas máscaras na rede de drenagem e área urbana. Na segunda etapa, diversas RNAs foram treinadas a partir de várias amostras de imagens representativas das classes de interesse e foi feita a classificação do restante da imagem utilizando a melhor RNA obtida. A terceira etapa consistiu na análise e validação dos resultados, realizando um cruzamento entre o mapa classificado visualmente e o mapa classificado pela Rede Neural escolhida. Utilizou-se o índice Kappa para avaliar o desempenho da RNA, uma vez que o uso desse coeficiente é satisfatório na avaliação da precisão de uma classificação temática. O resultado obtido foi superior aos resultados encontrados na literatura, com um índice Kappa de 0,558 para o relevo mais movimentado e 0,602 para o relevo menos movimentado.2013-04-212017-08-01T20:06:12Z2017-08-01T20:06:12Z2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfapplication/pdfANDRADE, L. N. et al. Application of artificial neural network in the classification of coffee areas in Machado, Minas Gerais State. Coffee Science, Lavras, v. 8, n. 1, p. 71-81, jan./mar. 2013.http://repositorio.ufla.br/jspui/handle/1/13614http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/363Coffee Science; v. 8, n. 1 (2013); 78-90Coffee Science; v. 8, n. 1 (2013); 78-90Coffee Science; v. 8, n. 1 (2013); 78-901984-39091809-6875reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAengporhttp://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/363/pdf_119http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/363/pdfAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAndrade, Livia NaiaraVieira, Tatiana Grossi ChquiloffLacerda, Wilian SoaresVolpato, Margarete Marin LordeloDavis Júnior, Clodoveu AugustoAndrade, Livia NaiaraVieira, Tatiana Grossi ChquiloffLacerda, Wilian SoaresVolpato, Margarete Marin LordeloDavis Júnior, Clodoveu Augusto2021-01-15T17:58:45Zoai:localhost:1/13614Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-01-15T17:58:45Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Application of artificial neural network in the classification of coffee áreas in Machado, Minas Gerais State |
title |
Application of artificial neural network in the classification of coffee áreas in Machado, Minas Gerais State |
spellingShingle |
Application of artificial neural network in the classification of coffee áreas in Machado, Minas Gerais State Andrade, Livia Naiara Artificial neural networks Cafeicultura Redes neurais artificiais Automatic classification Coffee Geoprocessamento Cafeicultura |
title_short |
Application of artificial neural network in the classification of coffee áreas in Machado, Minas Gerais State |
title_full |
Application of artificial neural network in the classification of coffee áreas in Machado, Minas Gerais State |
title_fullStr |
Application of artificial neural network in the classification of coffee áreas in Machado, Minas Gerais State |
title_full_unstemmed |
Application of artificial neural network in the classification of coffee áreas in Machado, Minas Gerais State |
title_sort |
Application of artificial neural network in the classification of coffee áreas in Machado, Minas Gerais State |
author |
Andrade, Livia Naiara |
author_facet |
Andrade, Livia Naiara Vieira, Tatiana Grossi Chquiloff Lacerda, Wilian Soares Volpato, Margarete Marin Lordelo Davis Júnior, Clodoveu Augusto |
author_role |
author |
author2 |
Vieira, Tatiana Grossi Chquiloff Lacerda, Wilian Soares Volpato, Margarete Marin Lordelo Davis Júnior, Clodoveu Augusto |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Andrade, Livia Naiara Vieira, Tatiana Grossi Chquiloff Lacerda, Wilian Soares Volpato, Margarete Marin Lordelo Davis Júnior, Clodoveu Augusto Andrade, Livia Naiara Vieira, Tatiana Grossi Chquiloff Lacerda, Wilian Soares Volpato, Margarete Marin Lordelo Davis Júnior, Clodoveu Augusto |
dc.subject.por.fl_str_mv |
Artificial neural networks Cafeicultura Redes neurais artificiais Automatic classification Coffee Geoprocessamento Cafeicultura |
topic |
Artificial neural networks Cafeicultura Redes neurais artificiais Automatic classification Coffee Geoprocessamento Cafeicultura |
description |
The coffee is extremely important activity in southern of Minas Gerais and techniques for estimating acreage, seeking reliable crop forecasts are being intensely investigated. It is presented in this study, an application of Artificial Neural Networks (ANN) for the automatic classification of remote sensing data in order to identify areas of the coffee region Machado, Minas Gerais. The methodology for developing the application of RNA was divided intothree stages: pre-processing of data, training and use of RNA, and analysis of results. The first step was performed dividing the study area into two parts (one embossed busiest and least busy one with relief), because this region has a strong emphasis smooth wavy, causing a greater difficulty of automatic mapping of use earth from satelliteimages. Masks were also created in the drainage network and the urban area. In the second step, various RNA’s were trained from several samples representative of the classes of images of interest and was made to classify the rest ofthe image obtained using the best RNA. The third step consisted in analyzing and validating the results, performing across between the classified map and the map visually classified by neural network chosen. We used the Kappa index to evaluate the performance of the RNA, since the use of this coefficient is satisfactory to assess the accuracy of a thematic classification. The result was higher than the results reported in the literature, with a Kappa index of 0.558 to 0.602 relief busiest and least busy for relief. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04-21 2013 2017-08-01T20:06:12Z 2017-08-01T20:06:12Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ANDRADE, L. N. et al. Application of artificial neural network in the classification of coffee areas in Machado, Minas Gerais State. Coffee Science, Lavras, v. 8, n. 1, p. 71-81, jan./mar. 2013. http://repositorio.ufla.br/jspui/handle/1/13614 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/363 |
identifier_str_mv |
ANDRADE, L. N. et al. Application of artificial neural network in the classification of coffee areas in Machado, Minas Gerais State. Coffee Science, Lavras, v. 8, n. 1, p. 71-81, jan./mar. 2013. |
url |
http://repositorio.ufla.br/jspui/handle/1/13614 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/363 |
dc.language.iso.fl_str_mv |
eng por |
language |
eng por |
dc.relation.none.fl_str_mv |
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/363/pdf_119 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/363/pdf |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.source.none.fl_str_mv |
Coffee Science; v. 8, n. 1 (2013); 78-90 Coffee Science; v. 8, n. 1 (2013); 78-90 Coffee Science; v. 8, n. 1 (2013); 78-90 1984-3909 1809-6875 reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1807835097988071424 |