Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE

Detalhes bibliográficos
Autor(a) principal: Silva, Dâmocles Aurélio Nascimento da
Data de Publicação: 2016
Outros Autores: Cunha Filho, Moacyr, Falcão, Ana Patrícia Siqueira Tavares, Alves, Gabriela Isabel Limoeiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/13982
Resumo: Many aspects of the weather cycle could be described by time series data. Meteorologists often use time series data to assess climate conditions and forecasts. Such models are generally continuous models. The interest was to analyze discrete weather data with the INAR (1) model, using classical and Bayesian approach to parameter estimation. The proposal is to analyze the data series utiizando mixed models with Bayesian approach. Thus, this work is described a sequence of procedures for estimating parameters of autoregressive models of order p = 1, for integer values INAR(1), by classical inference via maximum likelihood estimator and Bayesian inference via simulation Monte Carlo Markov Chain (MCMC). Two alternatives are considered for the a priori density of the model parameters. For the former case is adopted a density non-priori information. For the second, we adopt a density combined beta-gamma. A posteriori analysis is performed by algorithms of MCMC simulation. Also evaluates the prediction of new values of the series number of days with precipitation. The period of analysis comprised 30=11= 1993 to 29=02=2012 and obtained estimates of the period of 31=03=2012 to 28=02=2013. One INAR (1) model of classical parameter estimation and two models INAR (1) Bayesian estimation for the parameters were used. The choice of the most appropriate model the Akaike information criterion (AIC) was used. The analysis of forecast errors was an instrument used to determine which model is best suited to the data. We conclude that the use of MCMC simulation makes the process more exible Bayesian inference and can be extended to larger problems. Bayesina models showed better performance than the classical model.
id UFLA_820dddd7717ecb2a0567fcec49028a57
oai_identifier_str oai:localhost:1/13982
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PEModelos INARInferência BayesianaModelos mistosMany aspects of the weather cycle could be described by time series data. Meteorologists often use time series data to assess climate conditions and forecasts. Such models are generally continuous models. The interest was to analyze discrete weather data with the INAR (1) model, using classical and Bayesian approach to parameter estimation. The proposal is to analyze the data series utiizando mixed models with Bayesian approach. Thus, this work is described a sequence of procedures for estimating parameters of autoregressive models of order p = 1, for integer values INAR(1), by classical inference via maximum likelihood estimator and Bayesian inference via simulation Monte Carlo Markov Chain (MCMC). Two alternatives are considered for the a priori density of the model parameters. For the former case is adopted a density non-priori information. For the second, we adopt a density combined beta-gamma. A posteriori analysis is performed by algorithms of MCMC simulation. Also evaluates the prediction of new values of the series number of days with precipitation. The period of analysis comprised 30=11= 1993 to 29=02=2012 and obtained estimates of the period of 31=03=2012 to 28=02=2013. One INAR (1) model of classical parameter estimation and two models INAR (1) Bayesian estimation for the parameters were used. The choice of the most appropriate model the Akaike information criterion (AIC) was used. The analysis of forecast errors was an instrument used to determine which model is best suited to the data. We conclude that the use of MCMC simulation makes the process more exible Bayesian inference and can be extended to larger problems. Bayesina models showed better performance than the classical model.Universidade Federal de Lavras2016-03-302017-08-01T20:09:55Z2017-08-01T20:09:55Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfapplication/pdfSILVA, D. A. N. da et al. Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE. Revista Brasileira de Biometria, São Paulo, v. 34, n. 1, p.63-83, 2016.http://repositorio.ufla.br/jspui/handle/1/13982Revista Brasileira de Biometria; Vol 34 No 1 (2016); 63-831983-0823reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.biometria.ufla.br/index.php/BBJ/article/view/92/31Copyright (c) 2016 Dâmocles Aurélio Nascimento da SILVA, Moacyr CUNHA FILHO, Ana Patrícia Siqueira Tavares FALCÃO, Gabriela Isabel Limoeiro ALVESAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSilva, Dâmocles Aurélio Nascimento daCunha Filho, MoacyrFalcão, Ana Patrícia Siqueira TavaresAlves, Gabriela Isabel LimoeiroSilva, Dâmocles Aurélio Nascimento daCunha Filho, MoacyrFalcão, Ana Patrícia Siqueira TavaresAlves, Gabriela Isabel Limoeiro2021-04-22T16:10:10Zoai:localhost:1/13982Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-04-22T16:10:10Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE
title Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE
spellingShingle Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE
Silva, Dâmocles Aurélio Nascimento da
Modelos INAR
Inferência Bayesiana
Modelos mistos
title_short Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE
title_full Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE
title_fullStr Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE
title_full_unstemmed Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE
title_sort Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE
author Silva, Dâmocles Aurélio Nascimento da
author_facet Silva, Dâmocles Aurélio Nascimento da
Cunha Filho, Moacyr
Falcão, Ana Patrícia Siqueira Tavares
Alves, Gabriela Isabel Limoeiro
author_role author
author2 Cunha Filho, Moacyr
Falcão, Ana Patrícia Siqueira Tavares
Alves, Gabriela Isabel Limoeiro
author2_role author
author
author
dc.contributor.author.fl_str_mv Silva, Dâmocles Aurélio Nascimento da
Cunha Filho, Moacyr
Falcão, Ana Patrícia Siqueira Tavares
Alves, Gabriela Isabel Limoeiro
Silva, Dâmocles Aurélio Nascimento da
Cunha Filho, Moacyr
Falcão, Ana Patrícia Siqueira Tavares
Alves, Gabriela Isabel Limoeiro
dc.subject.por.fl_str_mv Modelos INAR
Inferência Bayesiana
Modelos mistos
topic Modelos INAR
Inferência Bayesiana
Modelos mistos
description Many aspects of the weather cycle could be described by time series data. Meteorologists often use time series data to assess climate conditions and forecasts. Such models are generally continuous models. The interest was to analyze discrete weather data with the INAR (1) model, using classical and Bayesian approach to parameter estimation. The proposal is to analyze the data series utiizando mixed models with Bayesian approach. Thus, this work is described a sequence of procedures for estimating parameters of autoregressive models of order p = 1, for integer values INAR(1), by classical inference via maximum likelihood estimator and Bayesian inference via simulation Monte Carlo Markov Chain (MCMC). Two alternatives are considered for the a priori density of the model parameters. For the former case is adopted a density non-priori information. For the second, we adopt a density combined beta-gamma. A posteriori analysis is performed by algorithms of MCMC simulation. Also evaluates the prediction of new values of the series number of days with precipitation. The period of analysis comprised 30=11= 1993 to 29=02=2012 and obtained estimates of the period of 31=03=2012 to 28=02=2013. One INAR (1) model of classical parameter estimation and two models INAR (1) Bayesian estimation for the parameters were used. The choice of the most appropriate model the Akaike information criterion (AIC) was used. The analysis of forecast errors was an instrument used to determine which model is best suited to the data. We conclude that the use of MCMC simulation makes the process more exible Bayesian inference and can be extended to larger problems. Bayesina models showed better performance than the classical model.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-30
2017-08-01T20:09:55Z
2017-08-01T20:09:55Z
2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, D. A. N. da et al. Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE. Revista Brasileira de Biometria, São Paulo, v. 34, n. 1, p.63-83, 2016.
http://repositorio.ufla.br/jspui/handle/1/13982
identifier_str_mv SILVA, D. A. N. da et al. Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE. Revista Brasileira de Biometria, São Paulo, v. 34, n. 1, p.63-83, 2016.
url http://repositorio.ufla.br/jspui/handle/1/13982
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.biometria.ufla.br/index.php/BBJ/article/view/92/31
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
publisher.none.fl_str_mv Universidade Federal de Lavras
dc.source.none.fl_str_mv Revista Brasileira de Biometria; Vol 34 No 1 (2016); 63-83
1983-0823
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439241295953920