Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/13982 |
Resumo: | Many aspects of the weather cycle could be described by time series data. Meteorologists often use time series data to assess climate conditions and forecasts. Such models are generally continuous models. The interest was to analyze discrete weather data with the INAR (1) model, using classical and Bayesian approach to parameter estimation. The proposal is to analyze the data series utiizando mixed models with Bayesian approach. Thus, this work is described a sequence of procedures for estimating parameters of autoregressive models of order p = 1, for integer values INAR(1), by classical inference via maximum likelihood estimator and Bayesian inference via simulation Monte Carlo Markov Chain (MCMC). Two alternatives are considered for the a priori density of the model parameters. For the former case is adopted a density non-priori information. For the second, we adopt a density combined beta-gamma. A posteriori analysis is performed by algorithms of MCMC simulation. Also evaluates the prediction of new values of the series number of days with precipitation. The period of analysis comprised 30=11= 1993 to 29=02=2012 and obtained estimates of the period of 31=03=2012 to 28=02=2013. One INAR (1) model of classical parameter estimation and two models INAR (1) Bayesian estimation for the parameters were used. The choice of the most appropriate model the Akaike information criterion (AIC) was used. The analysis of forecast errors was an instrument used to determine which model is best suited to the data. We conclude that the use of MCMC simulation makes the process more exible Bayesian inference and can be extended to larger problems. Bayesina models showed better performance than the classical model. |
id |
UFLA_820dddd7717ecb2a0567fcec49028a57 |
---|---|
oai_identifier_str |
oai:localhost:1/13982 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PEModelos INARInferência BayesianaModelos mistosMany aspects of the weather cycle could be described by time series data. Meteorologists often use time series data to assess climate conditions and forecasts. Such models are generally continuous models. The interest was to analyze discrete weather data with the INAR (1) model, using classical and Bayesian approach to parameter estimation. The proposal is to analyze the data series utiizando mixed models with Bayesian approach. Thus, this work is described a sequence of procedures for estimating parameters of autoregressive models of order p = 1, for integer values INAR(1), by classical inference via maximum likelihood estimator and Bayesian inference via simulation Monte Carlo Markov Chain (MCMC). Two alternatives are considered for the a priori density of the model parameters. For the former case is adopted a density non-priori information. For the second, we adopt a density combined beta-gamma. A posteriori analysis is performed by algorithms of MCMC simulation. Also evaluates the prediction of new values of the series number of days with precipitation. The period of analysis comprised 30=11= 1993 to 29=02=2012 and obtained estimates of the period of 31=03=2012 to 28=02=2013. One INAR (1) model of classical parameter estimation and two models INAR (1) Bayesian estimation for the parameters were used. The choice of the most appropriate model the Akaike information criterion (AIC) was used. The analysis of forecast errors was an instrument used to determine which model is best suited to the data. We conclude that the use of MCMC simulation makes the process more exible Bayesian inference and can be extended to larger problems. Bayesina models showed better performance than the classical model.Universidade Federal de Lavras2016-03-302017-08-01T20:09:55Z2017-08-01T20:09:55Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfapplication/pdfSILVA, D. A. N. da et al. Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE. Revista Brasileira de Biometria, São Paulo, v. 34, n. 1, p.63-83, 2016.http://repositorio.ufla.br/jspui/handle/1/13982Revista Brasileira de Biometria; Vol 34 No 1 (2016); 63-831983-0823reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.biometria.ufla.br/index.php/BBJ/article/view/92/31Copyright (c) 2016 Dâmocles Aurélio Nascimento da SILVA, Moacyr CUNHA FILHO, Ana Patrícia Siqueira Tavares FALCÃO, Gabriela Isabel Limoeiro ALVESAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSilva, Dâmocles Aurélio Nascimento daCunha Filho, MoacyrFalcão, Ana Patrícia Siqueira TavaresAlves, Gabriela Isabel LimoeiroSilva, Dâmocles Aurélio Nascimento daCunha Filho, MoacyrFalcão, Ana Patrícia Siqueira TavaresAlves, Gabriela Isabel Limoeiro2021-04-22T16:10:10Zoai:localhost:1/13982Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-04-22T16:10:10Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE |
title |
Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE |
spellingShingle |
Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE Silva, Dâmocles Aurélio Nascimento da Modelos INAR Inferência Bayesiana Modelos mistos |
title_short |
Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE |
title_full |
Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE |
title_fullStr |
Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE |
title_full_unstemmed |
Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE |
title_sort |
Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE |
author |
Silva, Dâmocles Aurélio Nascimento da |
author_facet |
Silva, Dâmocles Aurélio Nascimento da Cunha Filho, Moacyr Falcão, Ana Patrícia Siqueira Tavares Alves, Gabriela Isabel Limoeiro |
author_role |
author |
author2 |
Cunha Filho, Moacyr Falcão, Ana Patrícia Siqueira Tavares Alves, Gabriela Isabel Limoeiro |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Silva, Dâmocles Aurélio Nascimento da Cunha Filho, Moacyr Falcão, Ana Patrícia Siqueira Tavares Alves, Gabriela Isabel Limoeiro Silva, Dâmocles Aurélio Nascimento da Cunha Filho, Moacyr Falcão, Ana Patrícia Siqueira Tavares Alves, Gabriela Isabel Limoeiro |
dc.subject.por.fl_str_mv |
Modelos INAR Inferência Bayesiana Modelos mistos |
topic |
Modelos INAR Inferência Bayesiana Modelos mistos |
description |
Many aspects of the weather cycle could be described by time series data. Meteorologists often use time series data to assess climate conditions and forecasts. Such models are generally continuous models. The interest was to analyze discrete weather data with the INAR (1) model, using classical and Bayesian approach to parameter estimation. The proposal is to analyze the data series utiizando mixed models with Bayesian approach. Thus, this work is described a sequence of procedures for estimating parameters of autoregressive models of order p = 1, for integer values INAR(1), by classical inference via maximum likelihood estimator and Bayesian inference via simulation Monte Carlo Markov Chain (MCMC). Two alternatives are considered for the a priori density of the model parameters. For the former case is adopted a density non-priori information. For the second, we adopt a density combined beta-gamma. A posteriori analysis is performed by algorithms of MCMC simulation. Also evaluates the prediction of new values of the series number of days with precipitation. The period of analysis comprised 30=11= 1993 to 29=02=2012 and obtained estimates of the period of 31=03=2012 to 28=02=2013. One INAR (1) model of classical parameter estimation and two models INAR (1) Bayesian estimation for the parameters were used. The choice of the most appropriate model the Akaike information criterion (AIC) was used. The analysis of forecast errors was an instrument used to determine which model is best suited to the data. We conclude that the use of MCMC simulation makes the process more exible Bayesian inference and can be extended to larger problems. Bayesina models showed better performance than the classical model. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-30 2017-08-01T20:09:55Z 2017-08-01T20:09:55Z 2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVA, D. A. N. da et al. Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE. Revista Brasileira de Biometria, São Paulo, v. 34, n. 1, p.63-83, 2016. http://repositorio.ufla.br/jspui/handle/1/13982 |
identifier_str_mv |
SILVA, D. A. N. da et al. Classical and Bayesian estimation for INAR (1) models in number of precipitation days in Garanhuns-PE. Revista Brasileira de Biometria, São Paulo, v. 34, n. 1, p.63-83, 2016. |
url |
http://repositorio.ufla.br/jspui/handle/1/13982 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.biometria.ufla.br/index.php/BBJ/article/view/92/31 |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras |
publisher.none.fl_str_mv |
Universidade Federal de Lavras |
dc.source.none.fl_str_mv |
Revista Brasileira de Biometria; Vol 34 No 1 (2016); 63-83 1983-0823 reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439241295953920 |