Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/30239 |
Resumo: | This thesis is derived from a case study in plant nutrition where the researchers’ demand was to plan an experiment involving 14 factors representing supplements for banana fertilization, being seven soil fertilizers and seven leaf fertilizers. The objective was to evaluate the changes in growth, physiology and productivity, provided by these factors. The initial size the researchers envisioned for the experiment was 216 experimental units. This was an important constraint for researchers because of the availability of only 90 experimental units. The solution (experimental design) proposed for the experiment was based on the design of screening designs. The idea was to combine replicates of this design in each block in a complete factorial, in the same experiment. Exchange and Interchange algorithms were employed to concatenate the four factor levels of a complete factorial (3 4 series) with 10 a factorial fractional factors, consisting of series screening designs (3 10 6 ) in four blocks that additionally contain the 0 level for all factors. The objective of maintaining the fractional factorial was to verify the efficiency of separate analyzes of each block of the complete factorial, for didactic purposes, for the researchers’ interest. The model considered the effects of local control, pure main and quadratic effects of all factors, besides the effects of double factorial interactions of the complete factorial. The efficiency criterion for the choice of experimental points was the expected mean variance of the estimates of the effects of all factors, without considering the effects of blocks (A-Criterion - restricted optimality). After one round of interchanges the variance of the best design was diminished 4; 02% the average variance over possible designs distribution. With the best design found it was possible to estimate all the effects of interest. Additionally the actual experiment was evaluated at six months for some agronomic traits. The plan underwent some changes in the implementation and the loss of efficiency due to this problem was calculated by calculating the optimality criterion for the actual design. This design was changed in practice and was suboptimal, however it was relatively efficient, leading to assertions of significance by the F test for several of the factors in a preliminary study . It was also possible to show that the variance of the factorial-derived effects estimates was greater than the estimates of principal effects and quadratic terms in the fractional factorial. In this way, it is recommended the greater use in agronomy, of fractional factorials, or of combined designs that involve complete factorial and fractional factorial, since they are a flexible strategy and of greater precision in experimentation. |
id |
UFLA_8797be0b28b5f672d6a278127f37b4f0 |
---|---|
oai_identifier_str |
oai:localhost:1/30239 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeirasAlgoritmo de trocaAlgoritmo de intercâmbioDelineamento combinadoDelineamento de triagemCombining designExchange algorithmInterchange algorithmScreening designEstatísticaThis thesis is derived from a case study in plant nutrition where the researchers’ demand was to plan an experiment involving 14 factors representing supplements for banana fertilization, being seven soil fertilizers and seven leaf fertilizers. The objective was to evaluate the changes in growth, physiology and productivity, provided by these factors. The initial size the researchers envisioned for the experiment was 216 experimental units. This was an important constraint for researchers because of the availability of only 90 experimental units. The solution (experimental design) proposed for the experiment was based on the design of screening designs. The idea was to combine replicates of this design in each block in a complete factorial, in the same experiment. Exchange and Interchange algorithms were employed to concatenate the four factor levels of a complete factorial (3 4 series) with 10 a factorial fractional factors, consisting of series screening designs (3 10 6 ) in four blocks that additionally contain the 0 level for all factors. The objective of maintaining the fractional factorial was to verify the efficiency of separate analyzes of each block of the complete factorial, for didactic purposes, for the researchers’ interest. The model considered the effects of local control, pure main and quadratic effects of all factors, besides the effects of double factorial interactions of the complete factorial. The efficiency criterion for the choice of experimental points was the expected mean variance of the estimates of the effects of all factors, without considering the effects of blocks (A-Criterion - restricted optimality). After one round of interchanges the variance of the best design was diminished 4; 02% the average variance over possible designs distribution. With the best design found it was possible to estimate all the effects of interest. Additionally the actual experiment was evaluated at six months for some agronomic traits. The plan underwent some changes in the implementation and the loss of efficiency due to this problem was calculated by calculating the optimality criterion for the actual design. This design was changed in practice and was suboptimal, however it was relatively efficient, leading to assertions of significance by the F test for several of the factors in a preliminary study . It was also possible to show that the variance of the factorial-derived effects estimates was greater than the estimates of principal effects and quadratic terms in the fractional factorial. In this way, it is recommended the greater use in agronomy, of fractional factorials, or of combined designs that involve complete factorial and fractional factorial, since they are a flexible strategy and of greater precision in experimentation.Este trabalho de tese é derivado de um estudo de caso em nutrição de plantas em que a demanda dos pesquisadores era o planejamento de um experimento envolvendo 14 fatores representando suplementos para adubação em bananeiras, sendo sete adubos de solo e sete adubos foliares. O objetivo era avaliar as alterações no crescimento, fisiologia e produtividade, proporcionadas por esses fatores. O tamanho inicial que os pesquisadores imaginaram para a realização do experimento era de 216 unidades experimentais. Essa era uma restrição importante para os pesquisadores devido à disponibilidade de apenas 90 unidades experimentais. A solução (plano experimental) proposta para o experimento baseou-se na concepção de delineamentos de triagem. A ideia foi combinar réplicas deste delineamento em cada bloco em um fatorial completo, no mesmo experimento. Algoritmos de troca e de intercâmbio foram empregados para a concatenação dos níveis de quatro fatores de um fatorial completo (da série 3 4 ) com os níveis de 10 fatores de um fatorial fracionário, constituído de screening designs da série 3 10 6 repetidos em quatro blocos que contenham adicionalmente o nível 0 para todos os fatores. O objetivo de manter o fatorial fracionário era verificar qual a eficiência de análises separadas de cada bloco do fatorial completo, para fins didáticos, por interesse dos pesquisadores. O modelo adotado considerou os efeitos de controle local, efeitos principais e quadráticos puros de todos os fatores, além dos efeitos das interações duplas dos fatores do fatorial completo. O critério de eficiência para a escolha dos pontos experimentais foi a variância média esperada das estimativas dos efeitos de todos os fatores, sem considerar os efeitos de blocos (Critério A-optimalidade restrita). Após uma rodada de intercâmbio diminuiu 4; 02% a variância do plano em relação ao valor médio da distribuição dos possíveis delineamentos. Com o plano encontrado é possível estimar todos os efeitos de interesse. Adicionalmente avaliou-se o experimento real implantado, medido aos seis meses para alguns caracteres agronômicos. O plano sofreu algumas alterações na implementação e foi calculada a perda de eficiência devido a este problema calculando o critério de optimalidade para o delineamento efetivamente praticado. O delineamento praticado foi sub-ótimo em relação ao proposto tendo sido, porém, relativamente eficiente, levando a afirmações de significância pelo teste F para vários dos fatores em estudo preliminar. Foi também possível mostrar que a variância das estimativas de efeitos derivados do fatorial completo foi maior que a das estimativas de efeitos principais e termos quadráticos no fatorial fracionário. Desta forma, recomenda-se o maior uso em agronomia, de fatoriais fracionários, ou ainda de delineamentos combinados que envolvam fatoriais completos e fatoriais fracionários, por constituírem estratégia flexível e de maior precisão em experimentação.Universidade Federal de LavrasPrograma de Pós-Graduação em Estatística e Experimentação AgropecuáriaUFLAbrasilDepartamento de Ciências ExatasBueno Filho, Júlio Sílvio de SousaLima, Claudiney Nunes dePio, Leila Aparecida SallesCirillo, Marcelo ÂngeloMorais, Augusto Ramalho deRibeiro, Paulo César Moraes2018-08-29T13:54:53Z2018-08-29T13:54:53Z2018-08-282018-06-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfRIBEIRO, P. C. M. Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras. 2018. 95 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2018.http://repositorio.ufla.br/jspui/handle/1/30239porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-05-11T15:26:24Zoai:localhost:1/30239Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-11T15:26:24Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras |
title |
Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras |
spellingShingle |
Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras Ribeiro, Paulo César Moraes Algoritmo de troca Algoritmo de intercâmbio Delineamento combinado Delineamento de triagem Combining design Exchange algorithm Interchange algorithm Screening design Estatística |
title_short |
Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras |
title_full |
Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras |
title_fullStr |
Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras |
title_full_unstemmed |
Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras |
title_sort |
Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras |
author |
Ribeiro, Paulo César Moraes |
author_facet |
Ribeiro, Paulo César Moraes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bueno Filho, Júlio Sílvio de Sousa Lima, Claudiney Nunes de Pio, Leila Aparecida Salles Cirillo, Marcelo Ângelo Morais, Augusto Ramalho de |
dc.contributor.author.fl_str_mv |
Ribeiro, Paulo César Moraes |
dc.subject.por.fl_str_mv |
Algoritmo de troca Algoritmo de intercâmbio Delineamento combinado Delineamento de triagem Combining design Exchange algorithm Interchange algorithm Screening design Estatística |
topic |
Algoritmo de troca Algoritmo de intercâmbio Delineamento combinado Delineamento de triagem Combining design Exchange algorithm Interchange algorithm Screening design Estatística |
description |
This thesis is derived from a case study in plant nutrition where the researchers’ demand was to plan an experiment involving 14 factors representing supplements for banana fertilization, being seven soil fertilizers and seven leaf fertilizers. The objective was to evaluate the changes in growth, physiology and productivity, provided by these factors. The initial size the researchers envisioned for the experiment was 216 experimental units. This was an important constraint for researchers because of the availability of only 90 experimental units. The solution (experimental design) proposed for the experiment was based on the design of screening designs. The idea was to combine replicates of this design in each block in a complete factorial, in the same experiment. Exchange and Interchange algorithms were employed to concatenate the four factor levels of a complete factorial (3 4 series) with 10 a factorial fractional factors, consisting of series screening designs (3 10 6 ) in four blocks that additionally contain the 0 level for all factors. The objective of maintaining the fractional factorial was to verify the efficiency of separate analyzes of each block of the complete factorial, for didactic purposes, for the researchers’ interest. The model considered the effects of local control, pure main and quadratic effects of all factors, besides the effects of double factorial interactions of the complete factorial. The efficiency criterion for the choice of experimental points was the expected mean variance of the estimates of the effects of all factors, without considering the effects of blocks (A-Criterion - restricted optimality). After one round of interchanges the variance of the best design was diminished 4; 02% the average variance over possible designs distribution. With the best design found it was possible to estimate all the effects of interest. Additionally the actual experiment was evaluated at six months for some agronomic traits. The plan underwent some changes in the implementation and the loss of efficiency due to this problem was calculated by calculating the optimality criterion for the actual design. This design was changed in practice and was suboptimal, however it was relatively efficient, leading to assertions of significance by the F test for several of the factors in a preliminary study . It was also possible to show that the variance of the factorial-derived effects estimates was greater than the estimates of principal effects and quadratic terms in the fractional factorial. In this way, it is recommended the greater use in agronomy, of fractional factorials, or of combined designs that involve complete factorial and fractional factorial, since they are a flexible strategy and of greater precision in experimentation. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-29T13:54:53Z 2018-08-29T13:54:53Z 2018-08-28 2018-06-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
RIBEIRO, P. C. M. Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras. 2018. 95 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2018. http://repositorio.ufla.br/jspui/handle/1/30239 |
identifier_str_mv |
RIBEIRO, P. C. M. Fatoriais fracionários em um exemplo de triagem de fatores na nutrição de bananeiras. 2018. 95 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2018. |
url |
http://repositorio.ufla.br/jspui/handle/1/30239 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Estatística e Experimentação Agropecuária UFLA brasil Departamento de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Estatística e Experimentação Agropecuária UFLA brasil Departamento de Ciências Exatas |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439340364365824 |